期刊文献+

控制CO_2的太阳能/甲烷互补系统热力经济性研究 被引量:3

The Study on the Solar/Methane Hybrid Power Generation System With Low Energy-Penalty CO_2 capture
原文传递
导出
摘要 基于多能源互补综合梯级利用的原则,本文提出了新型低能耗控制CO_2的太阳能与甲烷互补系统(LEHSOLCC),并对其进行了热力经济性分析。钯基合金膜具有很高的透氢性能,将此结构用于甲烷重整反应中,在中温条件下可实现甲烷的近完全转化,并在能量转化的同时,实现CO2的定向富集与低能耗分离。所提系统中,中温太阳能(550℃)首先经重整反应转化为合成气化学能,实现品位提升,其次通过燃料燃烧转化为高温燃气热能驱动燃气-蒸汽联合循环作功实现其高效热功转换。分析表明:额定工况下,系统发电成本为0.062$/kWh,回收期10年。与相同化石燃料输入及CO_2捕集水平的尾气捕集CO2的燃气-蒸汽联合循环(CC-Post)相比,发电成本降低11.4%,充分显示其性能优势。 Based on the principle of cascade utilization of multiple energy resources, a gas-steam combined cycle power system integrated with solar thermo-chemical fuel conversion and CO2 capture has been proposed and analyzed. The collected solar heat at 550℃ drives the endothermic methane reforming and is converted to the produced syngas chemical exergy, and then released as high-temperature thermal energy via combustion for power generation, achieving its high-emciency heat-power conversion. The reforming reaction is integrated with a Pd-based hydrogen separation membrane, which continuously withdraws hydrogen from the reaction zone and enables nearly full methane conversion. The CO2 enriched gas being concentrated in the retentate zone is collected and processed with pre-combustion decarbonization. The results from preliminary economic analysis show that the cost of electricity is 0.062 S/kWh, 11.4% lower than that in the reference system with the same methane input and CO2 removal ratio, and payback period is 10 years.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2013年第10期1807-1812,共6页 Journal of Engineering Thermophysics
基金 973国家重点基础研究发展计划(No.2010CB227301) 国家自然科学基金项目(No.51076152)
关键词 膜反应器 太阳能热化学 多能源互补 低能耗控制CO2 经济性 membrane reformer solar thermo-chemistry multi-energy complementation C02 cap-ture thermo-economic performance
  • 相关文献

参考文献2

二级参考文献30

  • 1Lior N, Koai K. Solar-Powered/Fuel-Assisted Rankine- Cycle Power and Cooling System: Simulation Method and Seasonal Performance [J]. ASME Trans. Journal of Solar Energy Engineering, 1984, 106:142-152.
  • 2Koai K, Lior N, Yeh H. Performance Analysis of a Solar- Powered/Fuel-Assisted Rankine Cycle with a Novel 30hp Turbine [J]. Solar Energy, 1984, 32:753 764.
  • 3Lior N, Koai K. Solar-Powered/Fuel-Assisted Rankine Cycle Power and Cooling System: Sensitivity Analysis, ASME Trans. Journal of Solar Energy Engineering, 1984, 106:447 456.
  • 4Hong H, Jin H, Ji J, et al. Solar Thermal Power Cycle with Integration of Methanol Decomposition and Middle- Temperature Solar Thermal Energy [J]. Solar Energy, 2005, 78:49-58.
  • 5Hong H, Jin H, Sui J, et al. Mechanism of Upgrading Low-Grade Solar Thermal Energy and Experimental Validation [J]. ASME Trans. Journal of Solar Energy Engineering, 2008, 130:021014.
  • 6Kesser K F, Hoffman M A, Baughn J W. Analysis of a Basic Chemically Recuperated Gas Tllrbine Power Plant [J]. ASME Journal of Engineering for Gas Turbines and Power, 1994, 116:277-284.
  • 7Abdallah H, Harvey S. Thermodynamic Analysis of Chemically Recuperated Gas Turbines [J]. Int. J. Therm. Sci., 2001, 40:372-384.
  • 8Nakagaki T, Ogawa T, Hirata H, et al. Development of Chemically Recuperated Micro Gas Turbine [J]. ASME Trans. Journal of Engineering for Gas Turbines and Power, 2003, 125:391-397.
  • 9Ishida M, Kawamura K. Energy and Exergy Analysis of a Chemical Process System with Distributed Parameters Based on the Energy Direction Factor Diagram [J]. Ind. Eng. Chem. Process Des. Dev., 1982, 21:690-695.
  • 10Ishida M. Thermodynamics Made Comprehensible [M]. New York: Nova Science, 2002.

共引文献2

同被引文献16

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部