期刊文献+

辐射对流耦合换热过程性能优化准则分析 被引量:2

An Analysis of Performance Optimization Criteria for a Coupled Radiative-Convective Heat Transfer Process
原文传递
导出
摘要 (火积)耗散极值原理和基于(火积)理论的热阻最小原理在传热过程优化中有着广泛应用,但在多种传热方式耦合传热过程中的应用尚未见报道。本文针对一典型的辐射对流耦合传热问题,定义了耦合传热过程的总(火积)耗散率和总热阻,并用数值方法验证了在给定总发射率、辐射热端温度、冷却流体温度和对流换热系数的前提下,当(火积)耗散率取极大值和热阻取极小值时,对应着用最小的辐射换热温差获得最大的换热热流,从而说明了(火积)耗散极值原理和热阻最小原理在该耦合传热过程分析与优化中的适用性,而此时熵产最小原理并不适用。 The principles of extremum entransy dissipation and minimum entransy-theory-based thermal resistance have been widely used in heat transfer optimization, but their applications to the coupled problems of different heat transfer ways were not previously reported. In this paper, for a typical coupled radiative-convective heat transfer process, the total entransy dissipation rate and entransy-theory-based thermal resistance are defined. It is numerically verified that the maximum total entransy dissipation rate and the minimum total thermal resistance correspond to obtaining the maximum heat flow at the cost of the minimum temperature difference of radiative heat transfer when the total emissivity, the hot end temperature of the radiative heat transfer, the temperature of the cooling fluid and the convection heat transfer coefficient are given. These results show the applicability of the principles of extrenmm entransy dissipation and minimum thermal resistance to the coupled radiative-convective heat transfer process. In addition, it is demonstrated that the principle of minimum entropy generation is not appropriate to optimize this process.
作者 吴晶
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2013年第10期1922-1925,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51206079) 南京航空航天大学基本科研业务费专项科研项目(No.NS2012142)
关键词 辐射对流耦合换热 优化准则 (火积)耗散 热阻 熵产 coupled radiative-convective heat transfer optimization criteria entransy dissipation thermal resistance entropy generation
  • 相关文献

参考文献2

二级参考文献12

  • 1吴晶,程新广,孟继安,过增元.层流对流换热中的势容耗散极值与最小熵产[J].工程热物理学报,2006,27(1):100-102. 被引量:37
  • 2Ko T H.A numerical study on entropy generation and optimization for laminar forced convection in a rectangular curved duct with longitu- dinal ribs[].International Journal of Thermal Sciences.2006
  • 3Erek A,Dincer I.An approach to entropy analysis of a latent heat storage module[].International Journal of Thermal Sciences.2008
  • 4Bergles A E.Heat transfer enhancement-the encouragement and accom-modation of high heat fluxes[].Journal of Heat Transfer.1997
  • 5Bejan A.Entropy Generation through Heat and Fluid Flow[]..1982
  • 6Saouli S,Aiboud-Saouli S.Second law analysis of laminar falling liquid film along an inclined heated plate[].Int Comm Heat Mass Tran.2004
  • 7Bergles E.Some perspectives on enhanced heat transfer-second-generation heat transfer technology[].Journal of Heat Transfer.1988
  • 8Bejan,A.A study of entropy generation in fundamental convective heat transfer[].ASME Journal of Heat Transfer.1979
  • 9P. K. Nag and P. Mukherjee.Thermodynamic optimization of convective heat transfer through a duct with constant wall temperature[].International Journal of Heat and Mass Transfer.1987
  • 10R. T. Ogulata and F. Doba.Experiments and entropy generation minimization analysis of a cross-flow heat exchanger[].International Journal of Heat and Mass Transfer.1998

共引文献73

同被引文献44

  • 1李美艳,韩彬,蔡春波,王勇,宋立新.激光熔覆镍基合金温度场和应力场数值模拟[J].焊接学报,2015,36(5):25-28. 被引量:22
  • 2冯辉君,陈林根,谢志辉,孙丰瑞.基于(火积)耗散率最小的T-Y形肋片构形优化[J].工程热物理学报,2015,36(3):605-610. 被引量:1
  • 3过增元.热学中的新物理量[J].工程热物理学报,2008,29(1):112-114. 被引量:42
  • 4Garimella S V, Fleischer A S, Murthy J Y, et al. Ther- mal Challenges in Next-generation Electronic Systems [J]. Components and Packaging Technologies, IEEE Transac- tions on, 2008, 31(4): 801- 815.
  • 5Deng Qihong. Fluid Flow and Heat Transfer Characteris- tics of Natural Convection in Square Cavities Due to Dis- crete Source-sink Pairs [J]. International Journal of Heat and Mass Transfer, 2008, 51(25): 5949 -5957.
  • 6Alawadhi E M, Bourisliy R I. Forced Convection in a Wavy Channel With Discrete Heat Sources [J]. Interna- tional Journal of Numerical Methods for Heat & Fluid Flow, 2012, 22(2): 215 -227.
  • 7Kamath P M, Balaji C, Venkateshan S P. Heat Trans- fer Enhancement With Discrete Heat Sources in a Metal Foam Filled Vertical Channel [J]. International Commu- nications in Heat and Mass Tr'ansfer. 2014. 53: 180- 184.
  • 8GUO Zengyuan, ZHU Hongye, LIANG Xingang. Entransy-A Physical Quantity Describing Heat Transfer Ability [J]. International Journal of Heat and Mass Trans- fer, 2007, 50(13/14): 2545- 2556.
  • 9Chen Qun. Entransy Dissipation-based Thermal Resis- tance Method for Heat Exchanger Performance Design and Optimization [J]. International Journal of Heat and Mass Transfer, 2013.
  • 10Cheng Xuetao, Liang Xingang. Application of Entransy Optimization to One-stream Serles-wound and Parallel Heat Exchanger Networks [J]. Heat Transfer Engineering, 2014, 35(11/12): 985 -995.

引证文献2

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部