期刊文献+

溶剂成分对于火焰合成YSZ颗粒的影响

Effects of Solvent Composition on Morphology and Size Distribution of YSZ Particles Synthesized by Flame Spray Pyrolysis
原文传递
导出
摘要 本文采用火焰喷雾裂解法(FSP)合成了氧化钇稳定氧化锆(YSZ)微纳颗粒,研究了溶剂成分对合成的颗粒形态及粒径的影响,并利用XRD和SEM对生成的颗粒进行了表征.结果表明不同溶剂获得的颗粒晶型均为四方相(t相).采用蒸馏水作为溶剂时,除生成亚微米的球形致密颗粒外,还有许多微米大小的破壳形态颗粒生成.采用乙醇作溶剂时,仅有亚微米大小的球形致密颗粒生成。采用乙醇和2-乙基己酸(2-EHA)混合物作溶剂时,生成的颗粒粒径呈现双峰分布;既生成了球形致密的亚微米大颗粒,又观察到有絮状形态的纳米颗粒生成.实验发现合成颗粒的粒径受乙醇和2-EHA的配比控制.随着混合溶剂中2-EHA含量增加,亚微米大颗粒逐渐减少,纳米颗粒逐渐增多,本文对其生成机理进行了分析. Yttria-stabilized zirconia (YSZ) ultrafine particles were synthesized by flame spray pyrolysis method and the effects of solvent composition on morphology and particle size were studied. Particles were examined by using X-ray diffractometry (XRD) and scanning electron microscope (SEM). Only tetragonal phase particles were synthesized by using different precursor solutions. SEM results showed dense and spherical submicron-sized particles as well as micron-sized cracked shell-like structures were prepared from distilled water solution. While, when applying ethanol as solvent, there were only dense and spherical submicron-sized particles formed. When ethanol and 2-EHA mixture were used as solvent, the as-prepared particles exhibited a bimodel size distribution, both submicron- and nano- sized particles were observed. Particle size was controlled by varying the volume ratio of ethanol to 2-EHA. As the increase of 2-EHA's percentage in solvent, average size of as-prepared particles decreased. The mechanism of particle formation was analyzed in this paper.
作者 周雄 孔文俊
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2013年第10期1956-1959,共4页 Journal of Engineering Thermophysics
基金 国家"863"计划资助项目(NO.2011AA050606) 中国科学院工程热物理研究所知识创新工程资助项目
关键词 火焰喷雾裂解 YSZ 溶剂成分 flame spray pyrolysis YSZ solvent composition
  • 相关文献

参考文献13

  • 1周宏明,易丹青,余志明,肖来荣.热障涂层的研究现状与发展方向[J].材料导报,2006,20(3):4-8. 被引量:34
  • 2郭洪波,宫声凯,徐惠彬.先进航空发动机热障涂层技术研究进展[J].中国材料进展,2009,28(9):18-26. 被引量:152
  • 3Karthikeyan J, Berndt C C, Tikkanen J, et al. Nano- material Powder and Deposits Prepared by Flame Spray Processing of Liquid Precursors [J]. NanoStruct Mater, 1997, 8:61-74.
  • 4Limaye A U, Helble J J. Morphological Control of Zirco- nia Nanoparticles through Combustion Aerosol Synthesis [J]. J Am Ceram Soc, 2002, 85(5): 1127-1132.
  • 5Kong W J, Shah J N, Ju Y G. Flame Synthesis and Effects of Host Materials on Yb3+/Er3+ Co-doped Upconversion Nanophosphors [J]. Mater Lett, 2010, 64:688-691.
  • 6Chang H, Kim S J, Jang H D, et al. Synthesis Routes for Titania Nanoparticles in the Flame Spray Pyrolysis [J]. Colloids and surf. 2008. 313-314:282-287.
  • 7Keyvani A, Saremi M, Sohi A H. An Investigation on Oxidation, Hot Corrosion and Mechanical Properties of Plasma-Sprayed Conventional and NanoStructured YSZ Coatings [J]. Surf & Coat Technol, 2011, 206:208-216.
  • 8Li J F, Liao H, Wang X Y, et al. Plasma Spray of Nanos- tructured Partially Yttria Stabilized Zirconia Powders [J]. Tribology Int, 2004, 37:77-84.
  • 9Karthikeyan J, Berndt C C, Tikkanen J, et al. Prepara- tion of Nanophase Materials by Thermal Spray Processing of Liquid Precursors [J]. NanoStruct Mater, 1997, 9: 137- 140.
  • 10Zhou X, Kong W J. Synthesis of Yttria-Stabilized Zirco- nia Particles by Flame Spray Pyrolysis Method [J]. Adv Mater Res, 2013, 629:70-74.

二级参考文献104

  • 1张玉娟,张玉驰,孙晓峰,管恒荣,胡壮麒,沈嘉年.热障涂层的发展现状[J].材料保护,2004,37(6):26-29. 被引量:22
  • 2Matsumoto K, Itoh Y, Kameda T, EB-PVD Process and Thermal Properties of Hafnia-Based Thermal Barrier Coating [ J ]. Science and Technology of Advanced Materials, 2003(4) : 153 - 158.
  • 3Miller R A, Current Status of Thermal Barrier Coatings-an Overview[J]. SurCoat Technol, 1987, 30:1-11.
  • 4Miller R A, Thermal Barrier Coatings for Aircraft Engines : History and Directions[J]. J Thermal Spray Tech, 1997(6) : 35 -42.
  • 5Cao X Q, Vassen R, Stoever D, Ceramic Materials for Thermal Barrier Coatings [ J ]. Journal of the European Ceramic Society, 2004, 24: 1-10.
  • 6Goward G W. Protective Coating Systems for High-Temperature Gas Turbine Components[J~. Mat Sci Tech, 1986(2) : 194 -200.
  • 7Hecht R J, Goward G W, Elam R C. High Temperature NiCoCrAlY Coatings: United States, Patent No. 3928026[ P], 1975.
  • 8Zhu D M, Miller R A, Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings [ R ]. Ohio : Ohio Aerospace Institute, Brook Park, Ohio, 2002.
  • 9Zhu D M, Miller R A. Development of Advanced Low Conductivity Thermal Barrier Coatings [ J ]. International Journal of Applied Ceramic Technology, 2004 ( 1 ) : 86 - 94.
  • 10Almeida D S, Silva C, Nono M, Thermal Conductivity Investigation of Zirconia Co-Doped with Yttria and Niobia EB-PVD TBCs [J]. Materials Science and Engineering A, 2007, 443:60-65.

共引文献182

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部