期刊文献+

一个自治混沌系统的Hopf分岔分析 被引量:6

An Analysis of Hopf Bifurcation for an Autonomous Chaotic System
下载PDF
导出
摘要 理论分析了一个自治混沌系统的平衡点的稳定性,并对该系统平衡点进行了Hopf分岔分析,得出Hopf分岔的参数条件.通过计算系统在平衡点的第一Lyapunov系数判断了分叉的方向及其稳定性.最后,通过数值模拟验证了理论推导的正确性. An autonomous chaotic system is studied in detail. The local stability of equilibrium is analyzed and the existence of Hopf bifurcation is established. Furthermore,formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are derived. Finally,a numerical example is given.
出处 《河北师范大学学报(自然科学版)》 CAS 北大核心 2013年第5期463-468,共6页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(11161027) 甘肃省自然科学基金(101RJZA067) 教育部科技研究重点项目(212180)
关键词 混沌系统 平衡点 第一Lyapunov系数 HOPF分岔 chaotic system equilibrium points the first Lyapunov coefficients Hopf bifurcation
  • 相关文献

参考文献8

  • 1李群宏,徐德贵.一个类Lorenz系统的动力学分析[J].重庆理工大学学报(自然科学),2011,25(2):112-116. 被引量:10
  • 2D1AS F S, MELLO L F, ZHANG Jiangang. Nonlinear Analysis in a Lorenz-like System [J]. Nonlinear Analysis: Real World Applications, 2010,11 : 3491-3500.
  • 3李险峰,张建刚,褚衍东,常迎香.一个新类Lorenz混沌系统的动力学分析及电路仿真[J].动力学与控制学报,2007,5(4):324-329. 被引量:10
  • 4彭国俊.一个混沌系统的霍普夫分叉分析[J].柳州师专学报,2007,22(1):124-126. 被引量:4
  • 5LI Xianfeng,CHLOUVERAKIS K E, XU D L. Nonlinear Dynamics and Circuit Realization of a New Chaotic Flow: A Va- riant of Lorenz,Chen and Lii,Nonlinear Analysis [J]. Real World Applications,2009(10) :2357-2368.
  • 6KUZNETSOV Y A. Elements of Applied Bifurcation Theory [M]. New York:Springer,2004.
  • 7SOTOMAYOR J,MELLO L F,BRAGA D C. Bifurcation Analysis of the Watt Governor System [J]. Computational Applied Mathematics, 2007,26 : 19-44.
  • 8MELLO L F,MESSIAS M,BRAGA D C. Bifurcation Analysis of a New Lorenz-like Chaotic System [J]. Chaos Solitons Fraetals, 2008,37 .. 1244-1255.

二级参考文献23

  • 1王建根,赵怡.Chen系统和一类统一混沌系统的同步控制[J].电路与系统学报,2004,9(6):57-60. 被引量:9
  • 2王繁珍,齐国元,陈增强,张宇辉,袁著祉.一个新的三维混沌系统的分析、电路实现及同步[J].物理学报,2006,55(8):4005-4012. 被引量:38
  • 3[2]Lorenz E N.Deterministic nonperiodic flow.J.Atmos.Sci.,1963,20:130 ~ 141
  • 4[3]Rossler,O E.An equation for continuous chaos.Physics Letter A,1976,57:397 ~ 398
  • 5[4]Chen G R,Ueta T.Yet another chaotic attractor.International Journal of Bifurcation and Chaos,1999,9:1465 ~1466
  • 6[5]Celikovsk y S,Chen G R.On a generalized Lorenz canonical form of chaotic systems via a nonlinear observed approach.International Journal of Bifurcation and Chaos,2002,8:1789 ~ 1812
  • 7[6]LüJ H,Chen G R.A new chaotic attractor coined.International Journal of Bifurcation and Chaos,2002,3:659 ~661
  • 8[7]LüJ H,Chen G R,Cheng D Z et al.Bridge the gap between the Lorenz system and the Chen system.International Journal of Bifurcation and Chaos,2002,12:2917 ~ 2926
  • 9[8]Liu C X,Liu T,Liu L.A new chaotic attractor.Chaos,Solitons and Fractals,2004,5:1031 ~ 1038
  • 10[9]Qi G Y,Chen G R,Du S Z,Chen Z Q,Yuan Z Z.Analysis of a new chaotic system.Physica A,2005,352 (2-4):295 ~308

共引文献15

同被引文献58

  • 1孙尧,汤丽平,李雪莲.突变控制及其在水下潜器中的应用[J].哈尔滨工程大学学报,2004,25(5):569-573. 被引量:5
  • 2褚衍东,李险峰,张建刚.Host-Parasitoid系统的分岔与混沌控制[J].动力学与控制学报,2006,4(4):332-337. 被引量:2
  • 3任海鹏,刘丁.基于贝努力映射和CPLD的混沌A/D转换器[J].仪器仪表学报,2007,28(1):42-47. 被引量:14
  • 4CHU Yan-dong,LI Xian-feng,ZHANG Jian-gang,CHANG Ying-xiang.Nonlinear dynamics analysis of a new autonomous chaotic system[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(9):1408-1413. 被引量:14
  • 5LORENZ E N. Deterministic Nonperiodic Flow [J]. J Atmos Sci,1963(20):130-141.
  • 6PECORA L M, CARROLL T L. Synchronization in Chaotic Systems [J]. Phys Rev Lett, 1990 (64) : 821-824.
  • 7ZHANG Hongtao, LIU Xinzhi. Chaos Entanglement :A New Approach to Generate Chaos [J]. International Journal of Bi- furcation and Chaos,2013,23(5) :1330014.
  • 8DIAS F S, MELLO L F, ZHANG Jiangang. Nonlinear Analysis in a Lorenz-like System [J]. Nonlinear Analysis.. Real World Applications, 2010,11 ( 5 ) : 3491-3500.
  • 9HASSARD B D,KAZARINOFF N D,WAN Y H. Theory and Applications of Hopf Bifurcation [M]. Cambridge: Cambridge University Press, 1981.
  • 10SOTOMAYOR J,MELLO L F,BRAGA D C.Bifurcation analysis of the Watt Governor system[J] .Computational&Applied Mathematics,2007,26:19-44.

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部