期刊文献+

新型三角芯抗弯曲大模场面积光子晶体光纤 被引量:6

Novel bend-resistant large-mode-area photonic crystal fiber with a triangular-core
原文传递
导出
摘要 提出了一种新型三角芯抗弯曲大模场面积光子晶体光纤.该结构采用单一尺寸的圆形空气孔,降低了制作难度.在波长1.064μm处,在平直状态和弯曲半径为30 cm时,模场面积分别为1386μm2和1153μm2,弯曲带来的模场面积减少量仅为16.85%.当弯曲半径为30 cm时,基模的损耗为0.087 dB/m,二阶模的损耗大于1.5 dB/m,大的损耗差有效保证了光纤单模运转.此外,弯曲半径30 cm时,弯曲方向角扩展至±180,光纤弯曲不再受弯曲方向的限制.所设计的光纤结构具有大模场面积、小的模场面积减少量、低的弯曲损耗以及低的弯曲方向敏感度等优势,为小型化、集成化高功率激光传输及光纤激光器和放大器的研究奠定了基础. A novel bend-resistant large-mode-area photonic crystal fiber with a triangular-core is proposed in this paper. In this structure, the circle air holes with uniform size are used to reduce the difficulty in fabrication. At a wavelength of 1.064 btm, mode field area of the fundamental mode is 1386 Um2 in a straight state, and it is 1153 btm2 at a bending radius of 30 cm. The decrement of mode field area in a bent state is only 16.85% compared with that in a straight state. When a bending radius is 30 cm, bending loss of the fundamental mode is 0.087 dB/m while bending loss of the second order mode is higher than 1.5 dB/m. The bending loss difference between fundamental mode and second order mode is large enough to ensure that the fiber conforms to the single mode operation conditions. Furthermore, when the fiber is bent with a bending radius of 30 cm, the bending orientation angle can be extended to 180, breaking the limit of the bending orientation. The fiber with large mode area, small decrement in mode field area, low bending loss and low sensitivity of bending orientation makes a great contribution to the miniaturization of high power fiber laser and fiber amplifier.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第18期261-267,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61177082 61205074) 北京市自然科学基金(批准号:4122063)资助的课题~~
关键词 光子晶体光纤 大模场面积 抗弯曲 弯曲方向角 photonic crystal fiber, large-mode-area, bend-resistent, bending orientation angle
  • 相关文献

参考文献17

  • 1Li M J, Chen X, Liu A, Gray S, Wang J, Walton D T, Zenteno L A 2009 J. Lightwave Technol. 27 3010.
  • 2Tünnermann A, Schreiber T, R?ser F, Liem A, H?fer S, Zellmer H, Nolte S, Limpert J 2005 J. Phys. B 38 S681.
  • 3Knight J C, Birks T A, Cregan R F, Russell P S, de Sandro P 1998 Electron. Lett. 34 1347.
  • 4Tsuchida Y, Saitoh K, Koshiba M 2007 Opt. Express 15 1794.
  • 5Abdelaziz I, AbdelMalek F, Ademgil H, Haxha S, Gorman T, Bouchriha H 2010 J. Lightwave Technol. 28 2810.
  • 6Abdelaziz I, Ademgil H, AbdelMalek F, Haxha S, Gorman T, Bouchriha H 2010 Opt. Commun. 283 5218.
  • 7Chen M Y, Sun B, Zhang Y K, Tong Y Q, Zhou J 2010 Opt. Commun. 283 3153.
  • 8Hu D J J, Luan F, Shum P P 2011 Opt. Commun. 284 1811.
  • 9Napierala M, Nasilowski T, Bere?-Pawlik E, Berghmans F, Wójcik J, Thienpont H 2010 Opt. Express 18 15408.
  • 10Napierala M, Nasilowski T, Bere?-Pawlik E, Mergo P, Berghmans F, Thienpont H 2011 Opt. Express 19 22628.

共引文献1

同被引文献37

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部