期刊文献+

基于弹性网络的大鼠肝再生关键基因选择 被引量:2

Selection of the Key Genes for the Rat Liver Regeneration Via Elastic Net
下载PDF
导出
摘要 针对大鼠肝再生基因表达谱芯片数据挖掘问题,通过把肝再生过程划分为8个不同时间的子过程,将其转化为二分类问题,进而利用弹性网络对每1个子过程分别进行分类和相关基因选择.此外,以细胞增殖为主线,分析了所选择基因间的通路关系,验证了所选基因的生物合理性. By dividing the liver regeneration process into eight sub-processes of time,the data mining problem on the gene chip for the rat liver regeneration can be transformed into a series of binary classification problems.The elastic nets are applied to each sub-process to achieve simultaneous gene selection and classification.Furthermore,the pathways among the selected genes are analyzed by following the physiological activity of cell proliferation,thus illustrating the biological rationality of the selected genes.
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2013年第5期26-28,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(61203293) 河南省重点科技攻关计划(122102210131 122102210132) 河南省基础与前沿技术研究(132300410389 132300410390) 河南省教育厅科技攻关计划(13A120524) 河南省高校科技创新人才支持计划(13HASTIT040) 河南省高校青年骨干教师资助计划(2012GGJS-063)
关键词 大鼠肝再生 弹性网络 基因选择 rat liver regeneration elastic net gene selection
  • 相关文献

参考文献6

  • 1李钧涛,杨瑞峰,左红亮.统计机器学习研究[J].河南师范大学学报(自然科学版),2010,38(6):35-40. 被引量:11
  • 2Guyon I, Weston J, Barnhill S. Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2002,46 (1/ 2/3) :389-422.
  • 3Zou H, Hastie T. Regularization and variable selection via the Elastic net[J]. Journal of the Royal Statistical Society, Series B Statistical Methodology,2005,67(2) :301 320.
  • 4王小玉,李钧涛,陈留院.稀疏对数回归及其在基因选择中的应用[J].河南师范大学学报(自然科学版),2012,40(5):153-156. 被引量:5
  • 5Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent[J]. Journal of Statistical Software,2010,33(1) : 1-22.
  • 6Jeong W I, Park O, Radaeva S, et al. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell eytotoxicity[J]. Hepatology, 2006,44(6) 1441-1451.

二级参考文献48

  • 1王红蔚,孔波.一种改进的加权支持向量机[J].河南师范大学学报(自然科学版),2011,39(3):167-170. 被引量:6
  • 2王路平,刘晓华.基于LMI的时滞细胞神经网络的指数稳定性分析[J].河南师范大学学报(自然科学版),2007,35(2):39-41. 被引量:2
  • 3Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer,1995.
  • 4Shawe-Taylor J,Bartlett P,Williamson R,et al.Structural risk minimization over data-dependent hierarchies[J].IEEE Transactions on Information Theory,1998,44(5):1926-1940.
  • 5Cortes C,Vapnik V.Support vector networks[J].Machine Learning,1995,20:273-297.
  • 6Arun Kumar M,Gopal M.Least squares twin support vector machines for pattern classification[J].Expert Systems with Applications,2009,36(4):7535-7543.
  • 7Wang L,Zhu J,Zou H.The doubly regularized support vector machine[J].Statistica Sinica,2006,16:589-615.
  • 8Wang L,Zhu J,Zou H.Hybrid huberized support vector machines for microarray classification and gene selection[J].Bioinformatics,2008,24(3):412-419.
  • 9Zhu J,Rosset S,Hastie T,et al.1-norm support vector machines[J].Advances in Neural Information Processing Systems,2004,16:49-56.
  • 10Tibshirani R.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society,Series B,1996,58:267-288.

共引文献11

同被引文献3

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部