期刊文献+

耗散粒子动力学的一种新的固体壁面边界条件 被引量:2

A new wall boundary condition in dissipative particle dynamics
下载PDF
导出
摘要 由于耗散粒子动力学(DPD)粒子间是软势作用,很难施加无滑移的固体壁面边界,为此提出一种新的固体壁面边界条件,该方法是通过给壁面粒子赋予相对流体粒子的虚拟速度,但壁面粒子不能移动,虚拟速度用于计算壁面粒子对流体粒子的耗散力,进而增大流体粒子的耗散阻力,实现壁面无滑移条件.利用新的边界模型模拟了微通道内的Poiseuille流动,得到的微通道内的速度分布曲线表明,该模型实现了壁面无滑移条件;得到的密度和温度分布曲线显示,壁面附近密度波动很小,但当壁面粒子密度大于8.0时,壁面附近流体粒子密度波动较大.模拟结果与Navier-Stokes方程理论解吻合很好,进一步验证了新边界的可行性和DPD程序的正确性. Because of the soft potential that dissipative particle dynamics (DPD) employs, the boundary conditions are difficult to impose. A new boundary condition was proposed by giving a virtual velocity to the wall particles. The wall particles do not move in the simulation, and the virtual velocity is used in the calculation of the dissipative force between wall particles and fluid particles, which can increase the dissipa- tive force of the fluid particles, thus, the new boundary model can achieve the no-slip boundary conditions. Poiseuille flow was simulated in a narrow channel to demonstrate the validity of this boundary model. The simulation results of velocity, density and temperature distribution in the channel show that the new boundary condition model is an effective way to implement no-slip boundary conditions, and effectively eliminates density fluctuations in the near wall region. But when density of the wall is more than 8.0, the new wall boundary condition will be unable to work well. The good agreements of the simulation results with the theoretical solution of Navier-Stokes equation also verify the validity of the new model and DPD program.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第9期1603-1610,共8页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50775202) 高等学校博士学科点专项科研基金资助项目(J20081235) 浙江省自然科学基金重点资助项目(Z1100475)
关键词 耗散粒子动力学 DPD模拟 固体壁面边界 Poiseuille流动 dissipative particle dynamics DPD simulation wall boundary conditions Poiseuille flow
  • 相关文献

参考文献37

  • 1HOOGERBRUGGE P J, KOELMAN J M V A. Simu- lating microscopic hydrodynamic phenomena with dissi- pative particle dynamics [J].Europhysies Letters, 1992, 19(3):155 - 156.
  • 2ESPANOL P, WARREN P B. Statistical mechanics of dissipative particle dynamics [J]. Europhysies Letters, 1995, 30(4): 191-196.
  • 3MARSH C A, BACKX G, ERNST M H. Fokker- Planck-Boltzmann equation for dissipative particle dy- namics [J]. Europhysies Letters, 1997, 38 (6) : 411 - 415.
  • 4MARSH C A, BACKX G, ERNST M H. Static and dynamic properties of dissipative dynamics [J]. Physical Review E, 1997, 56(2) :1677 - 1691.
  • 5GROOT R D, WARREN P B. Dissipative particle dy- namics: Bridging the gap between atomistic and meso- scopic simulation [J]. The Journal of Chemical Physics, 1997, 107 (11): 4423-4435.
  • 6KONG Y,MANKE C W, MADDEN W G, et al. Mod eling the rheology of polymer solutions by dissipative particle dynamics [J]. Tribology Letters, 1997, 3 ( 1 ) : 133 - 138.
  • 7WILLEMSEN S M, HOEFSLOOT H C, IEDEMA P D. Mesoscopic simulation of polymers in fluid dynamics problems[J]. Journal of Statistical Physics, 2002, 107:53 - 65.
  • 8LIU M B, MEAKIN P, HUANG H. Dissipative parti- cle dynamics simulation of multiphase fluid flow in mi crochannels and microchannel networks [J]. Physics of Fluids, 2007, 19:033302.
  • 9LIU M B, MEAKIN P, HUANG H. Dissipative parti- cle dynamics simulation of pore-scale multiphase fluid flow [J]. Water Resources Research, 2007, 43 (4): W04411.
  • 10BOEK E S, CONVENEY P V, LEKKERKERKER H N W. Simulating the rheology of dense colloidal sus- pensions using dissipative particle dynamics [J].Physi- cal Review E, 1997, 55(3) :3124 - 3133.

二级参考文献25

  • 1陈硕,赵钧,范西俊,王丹.复杂流体流动的耗散粒子动力学研究进展[J].科技通报,2006,22(5):596-602. 被引量:14
  • 2Lees A W, Edwards S F. The computer study of transport processes under extreme conditions [J]. J Phys C: Solid State Phys, 1972, 5: 1921.
  • 3Lorenz E, Hoekstra A G. Lees Edwards boundary conditions for lattice Boltzmann suspension simulations [J]. Physical Review E, 2009, 79: 036706.
  • 4Wagner A J, Pagonabarraga I. Lees- Edwards boundary conditions for Lattice Boltzmann [J]. Journal of Statistical Physics, 2002, 107: 521.
  • 5Hoogerbrugge P J, Koelman J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics [J]. Europhysics Letters, 1992, 19(3):155.
  • 6Liu M B, Meakin P, Huang H. Dissipative particle dynamics with attractive and repulsive particle-particle interactions [J]. Physics of Fluids, 2006, 18: 017101.
  • 7Kong Y, Manke C W, Madden W G, et al. Effect of solvent quality on the conformation and relaxation of polymers via dissipative particle dynamics [J]. Journal of Chemical Physics, 1997, 107: 592.
  • 8Chen S, Phan-Thien N, Fan X J, et al. Dissipative particle dynamics simulation of polymer drops in a periodic shear flow [J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 118 (1): 65.
  • 9Boek E S, Coveney P V, Lekkerkerker H N W. Computer simulation of rheological phenomena in dense colloidal suspensions with dissipative particle dynamics [J].J Phys: Condens Matter, 1996, 8: 9509.
  • 10Fan X J, Phan-Thien N, Chen S,et al. Simulating flow of DNA suspension using dissipative particle dynamics [J]. Physics of Fluids, 2006, 18(6): 063102.

共引文献11

同被引文献20

  • 1冯剑,刘洪来,胡英.耗散粒子动力学的优化修正Velocity Verlet算法[J].化工学报,2006,57(8):1841-1847. 被引量:10
  • 2HOOGERBRUGGE P J, KOELMAN J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics[J]. Euro Phys Lett, 1992, 19(3):55-160.
  • 3ESPAlqOL P, SERRANO M, ZUlqIGA I. Coarse-graining of a fluid and its relation with dissipative particle dynamics and smoothed particle dynamic[J]. Int J Mod Phys C, 1997, 8(4):899-908.
  • 4GROOT R D, WARREN P B. Dissipative particle dynamics: Bridging the gap between atomistic and mcsoscopic simulation[J]. J Chcm Phys, 1997, 107(11):44234437.
  • 5ESPANOL P, WARREN P. Statistical mechanics of dissipative particle dynamics[J]. Euro Phys Lett, 1995, 30(4): 191-198.
  • 6TERRAY A, OAKEY J, MARR D W M. Microfluidic control using colloidal devices[J]. Science, 2002, 296(5574): 1841-1844.
  • 7MEHBOUDI A, SAIDI M S. A systematic method for the complex walls no-slip boundary condition modeling in dissipative particle dynamics[J]. Sci Iranica, 2011, 18(6): 1253-1260.
  • 8CHEN S, PHAN-THIEN N, KHOO B C, et al. Flow around spheres by dissipative particle dynamics[J]. Phys Fluids, 2006, 18(10): 1-14.
  • 9REVENGA M, ZUNIGA I, ESPANOL P, et al. Boundary models in DPD[J]. Int J Mod Phys C, 1998, 9(8): 1319-1328.
  • 10BERKENBOS A, LOWE C P. Accurate method for including solid-fluid boundary interactions in mesoscopic model fluids[J]. J Comput Phys, 2008, 227(9):4589-4599.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部