期刊文献+

液氧输送管路中阀控瞬变的数值计算 被引量:4

Numerical computation of hydraulic transients in valve operating processes of LO_2 delivery pipes
下载PDF
导出
摘要 为了预测航天器液氧输送系统中阀控动作产生的水力瞬变,考虑非稳态摩阻和波纹管弹性形变的影响,建立输送硬管、波纹软管、液氧贮罐及控制阀的数学模型,并利用求解一阶偏微分方程的特征线法和求解一元二次非线性方程的线性理论法对管路阀控瞬变进行数值计算.通过变化计算条件,讨论不同阀特性、阀动作指数和动作时间对瞬变过程的影响.计算结果表明:采用调节阀进行阀控动作产生的压力波动明显比截止阀小,调节阀比截止阀更容易控制液氧输送总量精度;延长调节阀关阀时间能够有效降低水击压力,延长截止阀关阀时间更多地表现为延长第一个水击波到达的时间,而不是水击压力的降低;阀动作指数m=1.0的调节阀采用快开慢关方案对瞬变过程控制最有利. To predict hydraulic transients of operating processes of control valve of LO2 delivery pipes for space vehicle, mathematical models of rigid pipe, corrugated pipe, LO2 tank and control valve were established on consideration of the influences of unsteady friction and corrugated pipe elastic deformation, numerical computation was carried out by method of characteristics to solve first order partial differential equation and method of linear theory to solve second order non-linear equation with single variable. Different influence to transient flow is discussed by changing flow characteristic, motion index and motion time of control valve. Calculations show that pressure surge in transient flow caused by operation of valve with equal percentage flow characteristic (VWEPFC) is significantly weaker than that of valve with quick opening flow characteristic (VWQOFC). The total accuracy of LO2 delivery is more easily controlled on operation of VWEPFC opposite to VWQOFC. Extending the closing time of VWEPFC could reduce the pressure surge efficiently, but the effect of extending the closing time of VWQOFC is mainly delayed arrival time rather than reduction of water hammer wave. Valve motion index of VWEPFC equal 1.0 and fast-opening along with slow-closing program is optimum to transient control of LO2 delivery pipes.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2013年第9期75-81,共7页 Journal of Harbin Institute of Technology
基金 国家航天科技创新项目(51317050206)
关键词 阀控 瞬变 特征线法 阀特性 阀动作指数 阀动作时间 valve operations transients method of characteristics valve inherent flow characteristic valve motion index valve motion time
  • 相关文献

参考文献12

  • 1刘照智,丁鹏飞,田青亚.液氢加注系统水击问题数值分析[J].导弹与航天运载技术,2010(4):10-12. 被引量:9
  • 2曹慧哲,贺志宏,何钟怡.有压管道水击波动过程及优化控制的解析研究[J].工程力学,2008,25(6):22-26. 被引量:16
  • 3BROYLES J W, SHIRT R W. Dynamic simulation as a tool for optimizing pressure control valve performance [ C ]//Proceedings of the International Pipeline Conference. Calgary, Aha, Canada: ASME, 2002: 1057 - 1066.
  • 4CHAUDHRYMH.实用水力过渡过程[M].陈家远,孙诗杰,张治滨,译.成都:四川省水力发电工程学会,1985.
  • 5GHIDAOUI M S, ZHAO Ming, MCLNNIS D A. A review of water hammer theory and practice [ J ]. Applied Mechanics Reviews, 2005,58 ( 1 ) :49 - 53.
  • 6江春波,焦云乔,李丹.有压管道的非恒定摩阻模型[J].清华大学学报(自然科学版),2009(3):346-350. 被引量:12
  • 7VITKOVSKY J P, BERGAN A T, SIMPSON A R, et al. Systematic evaluation of one-dimensional unsteady friction models in simple pipelines [ J ]. Journal of Hydraulic Engineering, 2006 (6) : 696 - 708.
  • 8JERKO S, SENKA M, NELIDA C Z. Nonconservative formulation of unsteady pipe flow models [ J ]. Journal of Hydraulic Engineering, 2010 ( 8 ) :483 - 492.
  • 9WYHEBE,STREETERVL.瞬变流[M].北京:水力电力出版社,1983:25-48.
  • 10REDDY P H, WALTER R M, CHAUDHRY M H. Estimation of decay coefficients for unsteady fricton for instantaneous acceleration-based models [ J ]. Journal of Hydraulic Engineering, 2012 (3) : 260 - 271.

二级参考文献34

  • 1万五一,练继建,李玉柱.阀门系统的过流特性及其对瞬变过程的影响[J].清华大学学报(自然科学版),2005,45(9):1198-1201. 被引量:28
  • 2才建,宫敬,宋生奎.瞬变流动中液体管道摩阻损失计算方法综述[J].水利水电科技进展,2007,27(2):90-94. 被引量:11
  • 3Brunone B, Ferrante M, Calabresi F. High Reynolds number transients in a pump rising main field tests and numerical modeling[C]//4tb International Conference on Water Pipeline Systems. York, UK: BHR Group, 2001; 339-348.
  • 4Zhang Y L, Vairavamoorthy K. Analysis of transient flow in pipelines with fluid-structure interaction using method of lines[J].International Journal for Numerical Methods in Engineering, 2005(63) : 1446 - 1460.
  • 5Ghidaoui M S, ZHAO Ming, McInnis D A, et al. A review of water hammer theory and practice[J]. Applied Mechanics Reviews, 2005, 58:49-75.
  • 6Zielke W. Frequency-dependent friction in transient pipe flow [J]. ASME J Basic English, 1968, 90(1): 109- 115.
  • 7Vardy A E, Brown J M. On turbulent unsteady, smooth-pipe-friction [C]//Proc of the 7th International Conf on Pressure Surges. BHR Group, Harrogate, United Kingdom, 1996: 289- 311.
  • 8Zarzycki Z. Hydraulic resistance of unsteady turbulent liquid flow in pipelines [C]//Proc 3rd Int Conf on Water Pipeline Systems. BHR Group, the Hague, the Netherlands, 1997 : 163 - 178.
  • 9Trikha A K. An efficient method for simulating frequency-dependent friction in transient liquid flow[J]. Journal of Fluids Engineering, 1975, 97 ( 1 ) : 97 - 105.
  • 10Vardy A E, Brown J M. Transient turbulent friction is smooth pipe flows [J].Journal of Sound and Vibration, 2003, 259(5): 1011 - 1036.

共引文献39

同被引文献33

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部