期刊文献+

水力喷射-空气旋流器中气液传质特性及其机理 被引量:14

Mass transfer characteristics and mechanism in a water-sparged aerocyclone
下载PDF
导出
摘要 对一种新型高效的气液传质设备——水力喷射-空气旋流器(WSA)的传质机理进行了研究。分别采用化学吸收法(CO2-空气-NaOH体系)和物理吸收法(CO2-空气-H2O体系)测定了不同进口气速、不同液体喷射速度下的有效相界面积a和液膜传质系数kL,并由此得到体积传质系数kL a。结果表明,由于WSA中气液间的强交互作用,a、kL以及kL a均随进口气速和液体喷射速度增大而增大。采用量纲分析法对实验数据进行了归纳,拟合出了a、kL和kL a随气相Reynolds数Reg、液相Weber数WeL之间的经验公式:a=0.0024Re1.25g We0.079L,ShL=35.31Re0.2303g We0.13L,kL a=6.52×10-8 Re1.48g We0.21L,这些关联式能较好地预测WSA的传质性能。研究还表明,在WSA中的气液射-旋流传质体系中,传质过程符合双膜理论、表面更新理论和溶质渗透理论,但以表面更新机理为主。 Water-sparged aerocyclone (WSA) is a new type of gas-liquid mass transfer equipment with high efficiency, the mass transfer mechanism in WSA was investigated in this paper. The interracial area (a) was determined by the chemical reaction method with CO2-NaOH solution system, and the liquid mass transfer coefficient (ku) was measured by the physical absorption method with CO2-H20 system. The a, kL and kLa increase with gas inlet velocity (Ug) and liquid jet velocity (UL) because of the gas-liquid intense interaction in WSA. The empirical formulae were developed for a, kL and kLa, i. e, a= 1.2 0.79 WeL kLa= 6. 52 X 1,,-8 n .8.. 0. zl 0.0024Reg WeE SHE=35.31Re2a3 o. 13 , , iv Keg weE , which fit the experimental data well and could be well used to predict the mass transfer characteristics in WSA. The mass transfer models of Whitman' double film theory, Higbie' penetration theory and Danckwerts' surface renewal theory can be well used to interpret the mass transfer mechanism of gas-liquid jet-aerocyclone system in WSA, and the surface renewal theory is the primary mass transfer mechanism.
出处 《化工学报》 EI CAS CSCD 北大核心 2013年第10期3652-3657,共6页 CIESC Journal
基金 国家自然科学基金项目(21176273) 重庆市科技攻关项目(CSTC2010AA7060) 重庆市教委项目(KJ120816)~~
关键词 水力喷射-空气旋流器 气-液传质 比相界面积 化学吸收法 water-sparged aerocyclone gas-liquid mass transfer interracial area chemical absorption
  • 相关文献

参考文献4

二级参考文献38

  • 1陈昭琼,熊双喜,伍极光.螺旋型旋转吸收器[J].化工学报,1995,46(3):388-392. 被引量:33
  • 2李伦,汪宏渭,陆嘉竑.城镇高氨氮污水的吹脱除氮试验研究[J].中国给水排水,2006,22(17):92-95. 被引量:16
  • 3Tan X Y, Tan S P, Teo W K, Li K. Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water. J. Mernbr. Sci. , 2006, 271: 59-68
  • 4Hung C M, Lou J C, Lin C H. Removal of ammonia solutions used in catalytic wet oxidation processes. Chemosphere, 2003, 52:989-995
  • 5Calli B, Mertoglu B, Inanc B. Landfill leachates management in Istanbul: applications and alternatives. Chemosphere, 2005, 59:819-829
  • 6Dempsey M J, Lannigan K C, Minall R J. Particulatebiofilm, expanded-bed technology for high rate, lowcost wastewater treatment: nitrification. Water Res. , 2005, 39, 965-974
  • 7Bonmati A, Floatats X. Air stripping of ammonia from pig slurry: characterization and feasibility as a pre- or posttreatment to mesophilic anaerobic digestion. Waste Manage, 2003, 23:261-272
  • 8Basakcilardan-kabakci S, Ipekoglu A N, Talinli I. Recovery of ammonia from human urine by stripping and absorption. Environ. Eng. Sci., 2007, 24 (5): 615-624
  • 9Marttinen S K, Kettunen R H, Sormunen K M, Soimasuo R M, Rintala J A. Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere, 2002, 46: 851-858
  • 10Ozturk Yangin I, Altinbas M, Koyuncu I, Arikan O, Gomec- C. Advanced physical-chemical treatment experiences on young municipal landfill leachates. Waste Manage, 2003, 23: 441-446

共引文献63

同被引文献171

引证文献14

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部