期刊文献+

蒙脱土/碳纳米管多维增强的聚乙烯复合材料的制备 被引量:4

Preparation of polyethylene/MMT/MWCNTs nanocomposite by in-situ polymerization
下载PDF
导出
摘要 聚烯烃是国民生活和现代国防不可或缺的基础原材料,但与ABS、PC等工程塑料相比,其刚性不足,低温脆性也较明显,因此很难作为结构材料使用。纳米技术的出现为聚烯烃材料性能的提高提供了广阔的空间叫,其中,纳米复合材料中存在纳米尺寸效应、超大的比表面积以及很强的界面相互作用,具有比强度高、可设计性强、抗疲劳性好等优点,因此,纳米复合聚乙烯中含少量纳米材料便能极大增强材料本身的性能,同时聚合物中纳米材料的低含量也大大减少了无机载体在聚合物中的灰分,有利于聚合物材料高性能的保持,这引起了研究工作者的广泛关注。 Heterogeneous Z-N catalysts were prepared by loading TIC14 on a mixture of modified nanoclays and functionalized carbon nanotubes as effective composite nanofillers in magnesium chloride. The polyethylene nanocomposites were produced via in-situ polymerization. The properties of nanocomposites were studied by controlling the content of montmorillonite (MMT), multi-walled carbon nanotubes (MWCNTs) in MgC12. Highly active polymerization catalyst with the nanofillers containing MMT, modified MWCNTs and MgC12 could be obtained. Mechanical properties of polyethylene containing composite nanofillers were better than those of polyethylene resin containing only one kind of nanofiller. WAXD analysis of the composites indicated that composite nanofillers of low content were uniformly dispersed in PE matrix and played an effective enhancement effect.
出处 《化工学报》 EI CAS CSCD 北大核心 2013年第10期3865-3870,共6页 CIESC Journal
基金 上海市创新计划纳米专项资助项目(11nm0502000) 上海市聚烯烃催化技术重点实验室项目(12DZ2260400)
关键词 纳米材料 聚合 载体 力学性能 复合材料 nanomaterials polymerization support mechanical properties composites
  • 相关文献

参考文献26

  • 1Roy R. Ceramics by the solution sol-gel route [J]. Science, 1987, 138:1664-1669.
  • 2Kuo SW, Huang W J, Huang S B, Kao H C, Chang F C. Syntheses and characterizations of in situ blended metallocenee polyethylene/clay nanocomposites [J]. Polymer, 2003, 44:7709-7719.
  • 3Shin S Y A, Simon L C, Soares J B P, Seholz G. Polyethylene clay hybrid nanocomposites : in situ polymerization using bifunetional organic modifiers [J]. Polymer, 2003, 44: 5317-5321.
  • 4Kawasumi M. The discovery of polymer-clay hybrids [J]. J. Polym. Sci. , Part A : Polym. Chem. , 2004, 42: 819-824.
  • 5Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties [J]. Prog. Polym. Sci., 2010, 35:357 -401.
  • 6Rahman A, AIi I, A1 Zahrani S M, Eleithy R H. A review of the applications of nanocarbon polymer composites [J]. Nano, 2011, 6:185-203.
  • 7Zhang W D, Phang I Y, Liu T X. Growth of carbon nanotubes on clay: unique nanostructured filler for high- performance polymer nanocomposites [J]. Adv. Mater., 2006, 18:73-77.
  • 8Trujillo M, Arnal M L, Muller A J, Laredo E, Bredeau S, Bonduel D, Dubois P. Thermal and morphological characterization of nanocomposites prepared by in-situ polymerization of high-density polyethylene on carbon nanotubes[J]. Macromolecules, 2007, 40:6268-6276.
  • 9He F A, Zhang L M. Using inorganic POSS-modifiedlaponite clay to support a nickel alpha diimine catalyst or in situ formation nanocomposites 5946 of high performance polyethylene [J]. Nanotechnology, 2006, 17: 5941.
  • 10Bergman J S, Chen H, Giannelis E P, Thomas M G, Coates G W. Synthesis and characterization of polyolefin silicate nanocomposites: a catalyst intercalation and in situ polymerization approach [ J J. Chem. Co*nmun. , 1999, 21: 2179-2180.

同被引文献60

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部