期刊文献+

微博中基于多关系网络的话题层次影响力分析 被引量:21

Topical Influence Analysis Based on the Multi-Relational Network in Microblogs
下载PDF
导出
摘要 微博服务每天产生大量涉及多个话题的信息,不同用户参与话题的讨论、传播等表现出不同的影响力.为了全面度量微博中用户在话题层次上的影响力,综合考虑4种网络关系:转发关系、回复关系、复制关系、阅读关系.针对复制关系和阅读关系的不确定性,给出了网络内部转移概率计算方法;针对多关系网络,提出了基于多关系网络的随机游走模型MultiRank,分别考虑了网络内部的转移概率和不同网络之间的跳转概率.最后将影响力个体根据其影响力属性分为"多话题层次影响力个体"和"单话题层次影响力个体".真实的Twitter数据集上验证了MultiRank的有效性,实验结果表明MultiRank优于TwitterRank和其他影响力个体发现方法,同时实验结果也表明多话题层次影响力个体数目相对所有影响力个体仅占少部分,但影响效果却明显高于单话题层次影响力个体. In microblogs contexts like Twitter, the number of content producers can easily reach tens of thousands and a large number of users participate in the discussion of the topic, for any given topic. While this large number can generate notable diversity and not all users are equally influential, it also makes finding the true influencers, those generally rated as interesting and authoritative on a given topic, challenging. In this paper, the influence of users is measured by random walks of multi- relational data in microblogs: repost, reply, copy, and read. As the uncertainty of copy and read, a new method is proposed to determine transition probabilities of uncertain relational networks. Moreover, the combined random walk is proposed for multi-relational influence network, considering both of the transition probabilities between the intra and inter of the network. Finally, influencers are classified into two types: multi-topical influencers and single-topical influencers. Experiments are conducted on a real dataset from Twitter containing about 0.26 million users and 2.7 million posts, and the results showed that the method in this paper is more effective than TwitterRank and other methods of discovering influencers. Also, the results show that the number of multi-topical influencers is far less than that of single-topical influencers, but the effect of influence is much stronger than that of single-topical influencers.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第10期2155-2175,共21页 Journal of Computer Research and Development
基金 国家"九七三"重点基础研究发展计划基金项目(2013CB329601 2013CB329602) 国家自然科学基金项目(60933005 9112400271331008 61302144)
关键词 话题影响力个体 社会网络 PAGERANK 多关系网络 微博 Key words topical influencer social network PageRank multi-relational network microblog
  • 相关文献

参考文献46

  • 1中国互联网络信息中心.中围互联网络发展状况统计报告[EB/OL].[2012-07-16].http:/www.cnnic.cn/dtyggldtgg/201201/W020120116337628870651.pdf.
  • 2Rogers E M. Diffusion of Innovations [M]. New York: The Free Press, 1962.
  • 3Weng J, Lira E P, Jiang J, et al. TwitterRank: Finding topic sensitive influential twitters [C]//Proc of the 3rd ACM Int Conf on Web Search and Data Mining. New York:ACM, 2010: 261-270.
  • 4Pal A, Counts S. Identifying topical authorities in microblogs [C] //Proc of the 4th ACM Int Conf on Web Search and Data Mining. New York: ACM, 2011:45-54.
  • 5Gladwell M. The Tipping Point: How Little Things Can Make a Big Difference[M]. New York: Little Brown, 2000.
  • 6Berry J, Keller E. The Influentials: One American in Ten "Fells the Other Nine How to Vote, Where to Eat, and What to Buy[M]. New York: The Free Press, 2003.
  • 7Katz E, Lazarsfeld P. Personal Influence: The Part Played by People in the Flow of Mass Communications [M]. New York: The Free Press, 1955.
  • 8Frank M B. A new product growth for model consumer durables[J]. Management Science, 1969, 15(5): 215-227.
  • 9Young H P. The diffusion of innovations in social networks [EB/OL]. (2000 05 31) [2012-07- 16]. http://economics. ouls. ox. ae. uk/1996/1/diffusion, pdf.
  • 10Kempe D, Kleinberg J, Tardos I: Maximizing the spread of influence through a social network [C]//Proc of the 9th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2003: 137-146.

二级参考文献15

  • 1黄岳钧,李树丞.层次分析法与模糊评价在企业招聘中的应用[J].现代管理科学,2006(4):6-8. 被引量:28
  • 2刘威,唐常杰,乔少杰,温粉莲,左劼.基于概念邮件系统的犯罪数据挖掘新方法[J].计算机科学,2007,34(2):213-215. 被引量:4
  • 3乔少杰 唐常杰 于中华 等.基于属性筛选支持向量机挖掘虚拟社团结构[J].计算机科学,2005,32(7):208-208.
  • 4Berkowitz B D, Goodman A E. Best Truth.. Intelligence in the Information Age. New Haven: Yale University Press, 2000
  • 5Fayyad U M, Uthurusamy R. Evolving data mining into solutions for insights. Communications of the ACM, 2002, 45 (8) : 28-31
  • 6Lim M J, Negnevitsky M, Hartmett J. Personality trait based simulation model of the e-mail system. International Journal of Network Security, 2006, 3(2) : 164-182
  • 7Xu J J, Chen Hsinchun. CrimeNet Explorer: A framework for criminal network knowledge discovery. ACM Transactions on Information Systems, 2005, 23(2): 202-226
  • 8Krebs V E. Mapping networks of terrorist cells. Connections, 2002, 24(3): 43-52
  • 9Dombroski Matthew J, Carley Kathleen M. NETEST: Estimating a terrorist networkrs structure. Computational and Mathematical Organization Theory, 2002, 8(3): 235-241
  • 10Qiao Shao-Jie, Tang Chang-Jie, Peng Jing, Fan Hong-Jian, Xiang Yong. VCCM Mining: mining virtual community core members based on gene expression programming//Proceedings of the Workshop on Intelligence and Security Informaties 2006. Singapore, 2006:133-138

共引文献18

同被引文献173

引证文献21

二级引证文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部