期刊文献+

地下采场破碎岩体稳定性评价与参数优化 被引量:42

Stability Evaluation and Parameter Optimization on the Fractured Rock Mass Around Underground Stope
下载PDF
导出
摘要 以焦家金矿试验采场为工程依托,开展缓倾斜中厚破碎矿体采场稳定性分析.通过对焦家金矿-390 m中段试验采场的工程地质调查、矿岩力学性质试验,获得了表征矿山岩体工程质量的多种指标;应用岩石质量Q分级和RMR分级系统,对试验采场岩体稳定性进行评价分析;基于修正的Mathews稳定图法和临界跨度设计法,对采场暴露面尺寸和最大跨度进行优化.分析认为,当回采进路跨度小于8 m时即可保证采场的稳定性.将所得到的结果应用于现场工业试验,现场采用暴露面尺寸为7.5 m×15 m的进路进行回采,采用现场观测的手段进行回采过程的监测.结果表明,在回采过程中进路的顶板及围岩并未发生垮落及剥落现象,采场围岩稳定性良好. The stope stability analysis of test stope in the gently inclined ore body with medium thickness was carried out in the Jiaojia Gold Mine,Shandong Province.By means of the engineering geologic investigation and rock mechanics experiments at the-390 m level,many mechanical indexes which reflect the quality of engineering rock mass were acquired.On the basis of the mass data analysis,applying of "Q"and"RMR"rock mass quality classification,rock mass rating model was established.According to the rock mass rating model,together the revised Mathews stability graph and the critical span design method,maximum exposed surface size of stope and maximum span were obtained.Through this great amount of analysis,it will guarantee the stability of stope when the span of stoping drift is less than 8 m.The result was applied to the industry test,there the exposed surface size is designed as 7.5 m × 15 m,and the in-situ observation is used to monitor the mining process.The monitoring indicated that the caving and spalling of roof or sidewall do not occurred during the mining,and the stability of stoping drift is guaranteed.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第9期1322-1326,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(51274055 51204030 51204031) 国家"十二五"科技支撑计划项目(2013BAB02B01 2013BAB02B03) 中央高校基本科研业务费专项资金资助项目(N110401003 N110501001)
关键词 Mathews稳定图 采场稳定性 岩体分级 采场跨度 临界跨度法 Mathews stability graph stability of stope rock mass classification span of stoping drift critical span method
  • 相关文献

参考文献13

  • 1Feng X T, Hudson L The ways ahead for rock engineering design methodologies[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41 ( 2 ) : 255 - 273.
  • 2Feng X T, Hudson J. Rock engineering design [ M ]. Leiden : CRC Press/Balkema,2011.
  • 3Barton N, Lien R, Lunde J. Engineering classifications of rock masses for the design of tunnel support[J].Rock Mechanics, 1974,6 (6) : 189 - 236.
  • 4Mathews K, Hock E, Wyllie D, et al. Prediction of stable excavations for mining at depths below 1000 metres in hard rock[ R ]. Ottawa: Natural Resources Canada, 1980.
  • 5BradyBHG.地下采矿岩石力学[M].3版.佘诗刚,朱万成,赵文,等译.北京:科学出版社,2011.
  • 6Potvin Y. Empirical open stope design in Canada [ D ].Vancouver: University British Columbia, 1988.
  • 7Han S M, Rory H, Zhang Y H. New rock stress factor for the stability graph method [ J ]. International Journal of Rock Mechanics &Mining Sciences,2011,48 ( 1 ) : 141 - 145.
  • 8Bewick R,Kaiser P. Nurmwical assessment of factor B in Mathews' method for open stope design[C]//Proceedings of 3rd CAN-US Rock Mecbanics Symposium. Toronto ,2009 : 1 - 12.
  • 9Lang B. Span design for entry type excavations [ D]. Vancouver: University of British Columbia, 1994.
  • 10Wang J, Pakalnis R, Milne D, et al. Empirical underground entry type excavation span design modification [ C ]// Proceedings of the 53rd Annual Conference. Ottawa: Canadian Geotechnical Society ,2000.

共引文献23

同被引文献320

引证文献42

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部