期刊文献+

银锡双金属催化剂的制备及其对氧还原的催化性能

Synthesis and Electrocatalysis Activity of Silver-Tin Bimetallic Catalysts for Oxygen Reduction Reaction
下载PDF
导出
摘要 在乙醇为溶剂和还原剂、碳粉为载体的体系中,采用水热法将Ag+或Ag+-Sn2+还原,形成纳米多孔网状结构的Ag或Ag-Sn双金属纳米颗粒,制备碳粉负载的Ag/C和Ag-Sn/C催化剂。利用循环伏安和线性扫描技术,研究了碱性溶液中这些催化剂对氧还原反应(ORR)的电活性。研究表明,Ag/C和Ag-Sn/C对ORR均表现出强的电催化活性,它们对ORR的起始电位约0.05 V(vs.Ag/AgCl)。在Ag97Sn3/C催化剂上,ORR的电流密度为2.87×10-3A/cm2(800 r/min),高于Ag/C。Levich方程分析表明,在Ag-Sn/C催化剂上,ORR转移电子数明显大于Ag/C,说明在Ag-Sn/C催化剂上,氧气能够较为彻底被还原。此外,在甲醇存在下,Ag/C和Ag-Sn/C对ORR的活性基本保持不变,表明它们对甲醇有较强的耐受力。 Carbon-loaded Ag or Ag-Sn bimetallic nanoparticles were prepared by the hydrothermal process, in which Ag+ or Ag+ + Sn2 + dissolved in ethanol were reduced to Ag or binary Ag-Sn nanoparticles by ethanol as the reduction agent. The morphological features of the catalysts show a typical nanoporous structure. Cyclic voltammetry and steady state polarization measurements were used to investigate the electroactivity of the samples for oxygen reduction reaction(ORR). The results show that both Ag,/C and Ag-Sn/C exhibits a high electrocatalysis activity, with the onset potential of ca. 0. 05 V ( vs. Ag/AgC1) and a high current density for the ORR. Levich analysis shows that the binary Ag-Sn/C possesses a much greater electron number for ORR than Ag/C. Among the prepared samples, the Ag97 Sn3/C catalyst displays the highest current density for oxygen reduction reaction. In addition, the Ag/C and Ag-Sn/C catalysts exhibit strong tolerance towards methanol.
出处 《应用化学》 CAS CSCD 北大核心 2013年第10期1176-1181,共6页 Chinese Journal of Applied Chemistry
基金 国家自然科学基金(20876038) 湖南省自然科学省市联合基金(10JJ9003) 湖南省高校创新平台开放基金(11K023)资助项目
关键词 银锡双金属 银电极 氧还原 水热法 binary silver-tin bimetallic, silver electrode, oxygen reduction, hydrothermal method
  • 相关文献

参考文献2

二级参考文献66

  • 1Sun, W.; Sun, G.; Qin, B.; Xin, Q. Sens. Actuators B: Chem. 2007, 128, 193.
  • 2Enyo, M. J. Appl. Electrochem. 1985, 15, 907.
  • 3Beltowska-Brzezinska, M.; Heitbaum, J.; Vielstich, W. Electrochim. Acta 1985, 30, 1465.
  • 4Beltowska-Brzezinska, M.; Heitbaum, J. J. Electroanal. Chem. 1985, 183, 167.
  • 5Avramov-Ivic, M.; Adzic, R. R.; Bewick, A.; Razaq, M. J. Electroanal. Chem. 1988, 240, 161.
  • 6Sun, S.-G.; Lu, G.-Q.; Tian, Z.-W. J. Electroanal. Chem. 1995, 393, 97.
  • 7Miki, A.; Ye, S.; Senzaki, T.; Osawa, M. J. Electroanal. Chem. 2004, 563, 23.
  • 8Jiang, C.; Chert, H.; Yu, C.; Zhang, S.; Liu, B.; Kong, J. Electrochim. Acta 2009, 54, 1134.
  • 9Wang, Z.; Zhu, Z.-Z.; Shi, J.; Li, H.-L. Appl. Surf Sci. 2007, 253, 8811.
  • 10Selvaraj, V.; Nirmala Grace, A.; Alagar, M. J. Colloid. Interface. Sci. 2009, 333, 254.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部