期刊文献+

过滤优化中人工神经网络的应用

下载PDF
导出
摘要 在饮用水的处理中,采用颗粒式过滤介质过滤是个很重要的过程。过程用以确保充分去除携带病原体(如:贾第虫和隐孢子虫,Giardia and Cryptosporidium)颗粒。通常,通过检测过滤后的水浊度来反映过滤性能的优劣。不过,颗粒数对于过滤操作中细微的变化极其敏感,所以颗粒数可以进一步反映过滤效率。埃尔金区水处理厂(WTP)应用人工神经网络(ANN)通过考察过滤后的水中颗粒数,对过滤进行优化。成功地开发了过程模型预测过滤后颗粒数。开发了两套逆过程模型,用来预测颗粒数达到要求时,凝聚剂的最佳用量。对模型进行检验显示,实测值和预测值之间具有较高的相关性。然后将这些ANNs集成到一个优化应用中,通过这个优化应用,模型和在线监控和数据采集系统(SCADA)之间可以进行实时数据传输。
出处 《过滤与分离》 CAS 2013年第3期36-44,共9页 Journal of Filtration & Separation
  • 相关文献

参考文献26

  • 1Betancourt, W. Q., and Rose, J. B. (2004). "Drinking water treatment processes for removal of Cryptosporidium and Giardia." Vet. Parasitol., 126(1-2), 219-234.
  • 2] Gyurek, L. L., and Finch, G.R. (1998). "Modelling water treatment chemical disinfection kinetics." J. Environ. Eng., 124(9), 783-793.
  • 3LeChevallier, M. W., and Norton, W.D.(1992). "Examining relationships between particle counts and Giardia, Cryptosporidium, and turbidity." J. Am. Water Works Assoc., 84(12), 54-60.
  • 4Hargesheimer, E. E., Mc Tigue, N. E., Mielke, J. L., Yee, P., and Elford, T.(1998). " Tracking filter performance with particle counting." J. Am. Water Works Assoc., 90 (12), 32-41.
  • 5Hatukai, S., Ben-Tzur, Y., and Rebhun, M.(1997)."Particle counts and size distribution in system design for removal of turbidity by granular deep bed filtration." Water Sci. Technol., 36(4), 225-230.
  • 6Nieminski, E. C., and Ongerth, J.E. (1995). " Removing Giardia and Cryptosporidium by conventional treatment and direct filtration." J. Am. Water Works Assoc., 87 (9),96-106.
  • 7Yu, M. J., et al. (2006). "Evaluation of the rapid filtration system with particle size distribution and Cryptosporidium in different operating conditions." Water Sci. Technol.: Water Supply, 6(1), 129-139.
  • 8Tupas, R. R. T. (2000). " Artificial neural networkmodeling of filtration performance." M. S. thesis, Univ. of Alberta, Edmonton, Alberta.
  • 9Zhang, Q., Cudrak, A. A., Shariff, R., and Stanley, S. J. (2004). " Implementing artificial neural network models for real-time water colour forecasting in a water treatment plant." J. Environ. Eng. Sci., 3, S15-$23.
  • 10Zhang, Q., and Stanley, S.J. (1999). " Real-time water treatment process control with artificial neural networks." J. Environ. Eng., 125(2), 153-160.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部