期刊文献+

一类非自治Hamilton系统的周期解 被引量:2

Periodic solutions for a class of non-autonomous Hamiltonian systems
原文传递
导出
摘要 利用局部环绕定理讨论非自治Hamilton系统的周期解的问题,在较广泛的条件下,得到了存在性结论. We use local linking theorem to discuss the periodic solutions for a class of non - autonomous Hamiltonian systems. Under some suitable conditions, an existence theorem is proved.
机构地区 河海大学理学院
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期587-591,共5页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金(10871059)
关键词 周期解 HAMILTON系统 局部环绕定理 periodic solutions Hamiltonian systems local linking theorem
  • 相关文献

参考文献12

  • 1RABINOWITZ P H. Periodic solutions of Hamiltonian systems [ J ]. Comm Pure Appl Math, 1978,31 (2) : 157-184.
  • 2MAWHIN J, WLLEM M. Critical point theory and hamiltonian systems [ M ]//Applied Mathematical Sciences ,74. New York: Springer, 1989.
  • 3FEI G. On periodic solutions of superquadratic Hamiltonian systems [ J]. J Differential Equations,2002,8:12.
  • 4BARTSCH T, WILLEM M. Periodic solutions of nonautonomous Hamiltonian systems with symmetries [ J]. J Reine Angew Math, 1994,451 : 149-159.
  • 5LI S J, SZULKIN A. Periodic solutions for a class of non - autonomous Hamihonian systems [ J ]. J Differential Equations, 1994,112:226-238.
  • 6LI S, WILLEM M. Applications of local linking to critical point theory [ J ]. J Math Anal Appl, 1995,189 (1) :6-32.
  • 7LONG Y, XU X. Periodic solutions for a class of Hamihonian systems [ J ]. Nonlinear Anal,2000,41 (5/4) :455 -465.
  • 8LIU C. Subharmonic solutions of Hamihonian systems [ J ]. Nonlinear Anal, 2000,42 ( 2 ) : 185-198.
  • 9DING Y, LEE C. Periodic solutions of Hamihonian systems [ J ]. SIAM J Math Anal,2000,32 (2) :555-571.
  • 10OU Zeng-qi, TANG Chun-lei. Periodic and subharmonic solutions for a class of superquadratic Hamihonian systems [ J ]. Non- linear Anal ,2004,58:245-258.

二级参考文献13

  • 1AMBUOSETTI A, COTI ZELATI V. Multiple homoclinic orbits for a class of conservative systems [ J ]. Rend Sere Mat Univ Padova, 1993,89 : 177-194.
  • 2AMBROSETTI A, RABINOWITA P H. Dual variational methods in critical point theory and applications [ J ]. J Funct Anal, 1973,14:349-381.
  • 3Marek Izydorek, Joanna Janczewska. Homoclinic solutions for a class of the second order Hamiltonian systems[ J ]. J Differenti- al Equations,2005,219:375-389.
  • 4TANG X H, XIAO Li. Homoclinic solutions for a class of the second - order Hamiltonian systems [ J ]. Nonlinear Analysis, 2009,71:1 140-1 152.
  • 5TANG X H, XIAO Li. Homoclinic solutions for nonautonomous second - order Hamiltonian systems with a coercive potential [J]. J Math Anal Appl,2009,351:586-594.
  • 6LV Xiang, LU Shi-ping,YAN Ping. Homoclinic solutions for nonautonomous second -order Hamiltonian systems with a coer- cive potential [ J ]. Nonlinear Analysis, 2010,72 : 3 484-3 490.
  • 7ZHANG Zi -heng, YUAN Rong. Homoclinic solutions for a class of non -autonomous subquadratic second -order Hamiltoni- an systems[ J]. Nonlinear Analysis,2009,71:4 125-4 130.
  • 8ZHANG Zi-heng, YUAN Rong. Homoclinic solutions for a class of asymptotically quadratic Hamiltonian systems [ J ]. Nonlinear Analysis: Real World Applications ,2010,11:4 185-4 193.
  • 9ZHOU Zhan, YU Jian-she. On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems [ J ]. J Dif- ferential Equations ,2010,249 : 1 199-1 212.
  • 10DENG Xiao-qing, CHENG Gong, SHI Hai-ping. Subharmonic solutions and homoclinie orbits of second order discrete Hamil- tonian systems with potential changing sign[ J]. Computers and Mathematics with Applications,2009,58:1 198-1 206.

同被引文献12

  • 1VELIN J.Existence results for some nonlinear elliptic system with lack of conpactness [ J ].Nonlinear Analysis:Theory, Methods & Applications,2003,52 (3) : 1 017-1 034.
  • 2WU T F.The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions [ J] .Nonlinear Analy- sis :Theory, Methods & Applications, 2008,68 (6) : 1 733-1 745.
  • 3HSU T S.Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlinearities[ J] .NonlinearAnalysis : Theory, Methods & Applications, 2009,71 (7) : 2 688-2 698.
  • 4MORAIS FILHO D C DE, SOUTO M A S.Systems of p-Laplacian equations involving homogeneous nonlinearities with critical sobolev exponent degrees[ J] .Communications in Partial Differential Equations, 1999,24(7/8) :1 537-1 553.
  • 5BOCCARDO L, MURAT F.Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations [ J ]. Nonlinear Analysis : Theory, Methods & Applications, 1992,19 ( 6 ) : 581-597.
  • 6HUANG D W, LI Y Q.Mnltiple solutions for a noncooperative p-Laplacian elliptic system in [ J ]. Journal Differential Equa- tions ,2005,215( 1 ) :206-223.
  • 7WILLEM M. Minimax theorem [ M ]. Boston : Birkhauser Boston Inc MA, 1996.
  • 8欧增奇,唐春雷.一类合作型拟线性椭圆方程组多个解的存在性[J].东北师大学报(自然科学版),2010,42(2):16-20. 被引量:1
  • 9储昌木,唐春雷.具有凹凸非线性项和变号位势函数拟线性椭圆系统解的多重结果[J].数学年刊(A辑),2011,32(4):443-458. 被引量:4
  • 10夏冬,夏铁成,李德生.分数阶超Yang族及其超哈密顿结构[J].数学物理学报(A辑),2015,35(2):373-380. 被引量:2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部