期刊文献+

基于像素分类校正优化的立体匹配算法 被引量:1

Stereo Matching Algorithm Based on Pixel Classification Rectification and Optimization
下载PDF
导出
摘要 为了提高双目立体匹配的效率、消除匹配歧义,本文采用粗细精度调节的方法,提出了一种基于匹配像素分类校正优化的立体匹配算法.使用局部算法生成初始可靠的视差图,进行相关置信度检测和弱纹理区域检测将匹配像素分类,并使用自适应权重算法和Hirschmüeller校正方法分别对分类像素进行校正,再通过基于分割的算法对视差值进行优化,得到最终的视差图.实验结果表明,该算法可以有效地消除匹配歧义,能得到分段平滑、精度高的稠密视差图. In order to increase the efficiency and remove the ambiguity of binocular stereo, a stereo matich- ing algorithm employing the method of hierarchical adjustment based on pixel classification rectification and optimization is proposed. Firstly, the initial disparity was generated by using the local matching stereo model. And the pixels were classified by adopting correlation confidence measurement and the detection of texture-less regions. Then their disparity values were rectified with adaptive support-weight approach and the Hirschmiieller rectification. The final disparity map was obtained form segment-based optimization the recti- fied disparity. The experimental results indicate that this technique can eliminate matching ambiguity and ob- tain piecewise smooth, accurate and dense disparity map effectively.
出处 《测试技术学报》 2013年第5期449-455,共7页 Journal of Test and Measurement Technology
基金 山西省高校高新技术产业化资助项目(2010002)
关键词 双目视觉 局部匹配 像素分类 校正 分割优化 binocular vision local matching pixel classification rectification segment-based optimization
  • 相关文献

参考文献13

  • 1Yoon K, Kweon I. Adaptive support-weight approach for correspondence search[J]. IEEE PAMI, 2006, 28(4) : 650-656.
  • 2Baykant B, Alag Z. Obtaining depth maps form color images by region based stereo matching algorithms[J ]. OncuBilim Al- gorithm And Systems Labs, 2008, 8(4) : 1-13.
  • 3Tao Hu, May Huang. A new stereo matching algorithm for binocular vision[C]. Daejeon: International Conference on Con- vergence and Hybrid Information Technology, 2009: 42-44.
  • 4Tombari F, Mattoccia S. Near real-time stereo based on effective cost aggregation[C]. Tampa: International Conference on Pattern Recognition, 2008: 1-4.
  • 5Tombari F, Mattoccia S, DiStefano L. Segmentation-based adaptive support for accurate stereo correspondence[C]. IEEE PSIVT, University of Bologna, 2007: 427-438.
  • 6Gerrits M, Bekaert P. Local stereo matching with segmentation-based outlier rejection[ C]. Computer and Robot Vision, Canada, 2006.
  • 7Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[C]. Hong Kong: ICPR, 2006: 15-18.
  • 8刘天亮,罗立民.基于分割稳健而快速的局部立体匹配及医学应用[J].计算机辅助设计与图形学学报,2010,22(1):100-107. 被引量:4
  • 9Yang Q, Wang L. Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling [J]. IEEEPAMI, 2009, 31(3): 492-504.
  • 10Manap N, Soraghan J. Disparity refinement based on depth image layers separation for stereo matching algorithms[J ]. Telecom. , Elec. Comp. Eng, 2012, 4(1): 223-231.

二级参考文献23

  • 1刘正东,杨静宇.自适应窗口的时间规整立体匹配算法[J].计算机辅助设计与图形学学报,2005,17(2):291-294. 被引量:12
  • 2Scharstein D, Szeliski R. A taxonomy and evaluation of dense two -frame stereo correspondence algorithms [J]. International Journal of Computer Vision, 2002, 47 (1/2/3) : 7-42.
  • 3Birchfield S, Tomasi C. A pixel dissimilarity measure that is insensitive to image sampling [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(4): 401-406.
  • 4Gerrits M, segmentation 3rd Canadian Quebec City, Bekaert P. Local stereo matching with based outlier rejection [C] //Proceedings of the Conference on Computer and Robot Vision, 2006:66-66.
  • 5Tombari F, Mattoccia S, Stefano L D. Segmentation-based adaptive support for accurate stereo correspondence [C] //Proceedings of the 2nd Pacific Rim Symposium on Image and Video Technology, Santiago, 2007: 427-438.
  • 6Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 650-656.
  • 7Gu Z, Su X Y, Liu Y K, et al. Local stereo matching with adaptive support weight, rank transform and disparity calibration [J]. Pattern Recognition Letters, 2008, 29 (9) 1230-1235.
  • 8Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self adapting dissimilarity measure [C] //Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, 2006: 15-18.
  • 9Kolmogorov V, Zabih R. Computing visual correspondence with occlusions using graph cuts[C] //Proceedings of the 8th International Conference on Computer Vision, Vancouver, 2001:508-515.
  • 10Veksler O. Stereo correspondence by dynamic programming on a tree [C] //Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, 2005 :384-390.

共引文献3

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部