期刊文献+

机动目标单站无源定位中的测量更新CKF-IMM算法 被引量:2

A CKF-IMM Update Measurement Algorithm for Single Observer Passive Location of Maneuvering Target
下载PDF
导出
摘要 机动目标单站无源定位是一个典型的非线性滤波问题,将一种新型的滤波算法)))容积卡尔曼滤波(CKF)应用于IMM算法之中。为进一步提高定位跟踪精度,提出了一种测量更新CKF-IMM算法。该算法利用马尔科夫过程控制子模型间的切换,并采用CKF算法对各模型进行滤波,然后将每个滤波器的输出状态进行概率加权求和,最后对融合状态再进行一次非线性测量更新。结合空频域单站无源定位模型进行仿真实验表明,与传统的EKF-IMM和UKF-IMM算法相比,CKF-IMM算法的估计误差更小、定位精度更高;而测量更新CKF-IMM算法较CKFIMM算法可进一步提高定位跟踪精度。 Single observer passive location of a maneuvering target is in a typical nonlinear filtering, a new filtering algorithm-cubature Kalman filter( CKF) is applied to IMM. To improve the location and tracking precision, an update CKF-IMM measurement algorithm is proposed. This algorithm uses Markov process to control the switching among the sub-models, and uses CKF for filtering of each model. The outputs of all parallel CKF are weighted stun as an integrated estimation and the integrat- ed estimation is put through the nonlinear update measurement. Combining with the spatial-frequency domain model, simulation results show that CKF-IMM has lower estimation error and higher precision comparing with the EKF-IMM and UKF-IMM ; The CKF-IMM update measurement is of better location and tracking performance than CKF-IMM.
出处 《电子信息对抗技术》 2013年第5期33-38,共6页 Electronic Information Warfare Technology
关键词 机动目标 单站无源定位 交互式多模型 容积卡尔曼滤波 测量更新 maneuvering target single observer passive location interacting muhiple model cubatureKalman filter update measurement
  • 相关文献

参考文献6

  • 1郭福成,孙仲康.三维机动辐射源的单站无源跟踪方法[J].现代雷达,2005,27(3):5-8. 被引量:11
  • 2BLOM H A P, BAR-SHALOM Y. The Interactive Multiple Model Algorithm for System with Markov Switching Coeffi- cients [ J 1. IEEE Trans on Automatic Control, 1988,33 (8) : 780 - 783.
  • 3JULIER S, UHLMANN J. Unscented Filtering and Non- linear Estimation [ J ]. Proceeding of the IEEE, 2004, 92 (3) :401 - 422.
  • 4ARASARATNAM I, HAYKIN S. Cubature Kalman Filters [J]. IEEE Trans on Automatic Control, 2009, 54(6): 1254- 1269.
  • 5刘江,蔡伯根,唐涛,王剑.基于CKF的GNSS/INS列车组合定位鲁棒滤波算法[J].交通运输工程学报,2010,10(5):102-107. 被引量:22
  • 6JAUFFRET C P D. Observability in Passve Target Motion Analysis[ J]. IEEE Trans on Aerospace and Electronic Systems, 1996,32(4) : 1290 - 1300.

二级参考文献19

  • 1HENSEL S, HASBERG C. Bayesian techniques for onboard train localization[C]///IEEE. Proceedings of IEEE/SP 15th Workshop on Statistical Signal Processing. Cardiff: IEEE/ SP, 2009: 361-364.
  • 2SAAB S. A map matching approach for train positioning part II: application and experimentation[J]. IEEE Transactions on Vehicular Technology, 2000, 49(2): 476-484.
  • 3FILIP A, BAZANT L, TAUFER J, et al. Train-borne position integrity monitoring for GNSS/INS based signalling [C] // JSME. Proceedings of International Symposium on Speed up and Service Technology for Railway and Maglev Systems. Tokyo: JSME, 2003.. 1-6.
  • 4GENGHI A, MARRADI L, MARTINELLI L, et al. The rune project: design and demonstration of a GPS/EGNO- based railway user navigation equipment[C] //ION. ION GPS/GNSS 2003. Portland: ION, 2003: 225-237.
  • 5SEO J, YU M J, PARK C G, et al. An extended robust H∞ filter for nonlinear constrained uncertain systems[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4471- 4475.
  • 6DAUM F. Nonlinear filters: beyond the Kalman filter[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 57-69.
  • 7ARASARATNAM I, HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54 (6) 1254-1269.
  • 8HAO Yan ling, CHEN Ming-hui, LI Liang jun, et al. Corn parison of robust H∞ filter and Kalman filter for initial alignment of inertial navigation system[J]. Journal of Marine Science and Application, 2008, 7(2); 116- 121.
  • 9Vincent J Aidala. Kalman filter behavior in bearing - only tracking applications. IEEE Transactions on Aerospace and Electronic Systems, 1979, AES - 15 ( 1 ) : 29 - 39.
  • 10Steven C Nardone, Allen Lingeren, Kai F Gong. Fundamental properties and performance of conventional bearings - only target motion analysis. IEEE Transactions on Automatic Control,1984,AC -29(9) : 775 -787.

共引文献31

同被引文献21

  • 1STRAKA O, DUNIK J, SIMANDL M. Randomized Unscented Kalman Filter in Target Tracking[C] // Proceedings of the 15th International Conference on Infor mation Fusion, Singapore: [s. n. ], 2012 : 503-510.
  • 2GARCiA-FERN,kNDEZ A F, MOREI.ANDE M R, GRAJAL J. Nonlinear Filtering Update Phase via the Single Point Truncated Unscented Kalman Fiher[C]// 2011 Proceedings of the 14th International Conference on Information Fusion, Chicago, IL: IEEE, 2011 : 1-8.
  • 3NORGAARD M, POULSEN N K, RAVN O. New Developments in State Estimation for Nonlinear Sys- tems[J]. Automatica, 2000, 36(11):1627-1638.
  • 4GUSTAFSSON F, HENDEBY G. Some Relations Be- tween Extended and Unscented Kalman Filters[J].IEEE Trans on Signal Processing, 2012, 60(2):545-555.
  • 5JULIER S J, UHLMANN J K. Unscented Filtering and Nonlinear Estimation [J]. Proceedings of the IEEE, 2004, 92(3):401-422.
  • 6ARASARATNAM I, HAYKIN S. Cubature Kalman Fihers[J]. lEEETranson Automatic Control, 2009, 54(6) : 1254-1269.
  • 7DAHMANNI Mohammed, MECHE Abdelkrim, KECHE Mokhtar. Reduced Cubature Kalman Filte- ring Applied to Target Traeking[C]//2t Interna- tional Conference on Control, Instrumentation and Automation, [S. 1.]:[s- n. ]1, 2011:1097-1101.
  • 8ARASARATNAM I, HAYKIN S, EI.LIOTT R J. Discrete Time Nonlinear Filtering Algorithms Using Gauss-Hermite Quadrature [J]. Proceedings of the IEEE, 2007, 95(5):953-977.
  • 9STROUD A H. Approximate Calculation of Multiple Integrals[M]. NJ :Prentice-Hall, 1971.
  • 10GENZ A, MONAHAN .1. Stochastic Integration Rules for Infinite Regions[J]. SIAM Journal on Sci- entific Computation, 1998, 19(2)=426-439.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部