期刊文献+

CUU:大规模时空数据区域查询更新策略

CUU:A Solution for Range Query and Update on Large-Scale Spatial-Temporal Data
下载PDF
导出
摘要 移动终端的普及催生了海量的时空数据。由于有了数据基础的支持,基于位置的服务应用也随之普及。传统的时空数据存储方案既难以适用于存储规模庞大、频繁更新的数据,又很难提供并发、高精度的区域查询服务。因此,参考大规模时空数据并发查询更新问题领域的最新研究成果,分析了该领域主流算法的特点及缺陷,设计了适用于海量高更新频率的时空数据(移动通信数据)的查询与更新算法CUU,讨论了区域查询精度问题及其解决方案。在真实移动通信数据上的实验结果表明,CUU算法可以高效处理并发的时空数据查询与更新。 As the mobile terminals are more and more widely used, large-scale spatial-temporal data are being created. Large-scale spatial-temporal data have made location based service popular. Traditional spatial-temporal indexes arenot capable of storing large-scale and frequently updated data and at the same time providing concurrent high resolu- tion range query. This paper explores latest research productions on solving concurrent updating and queries on large-scale spatial-temporal data, and analyzes the characters and weaknesses of mainstream algorithms. Then this paper presents a new algorithm called CUU on solving storing, updating and queries on large-scale spatial-temporal data. It also talks about the accuracy of range query problem and its solution. The experimental results on real tele- communication data show that CUU is capable of offering efficient concurrent queries and update services.
出处 《计算机科学与探索》 CSCD 2013年第10期886-895,共10页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.60973002 61170003 61073018 国家高技术研究发展计划(863计划)Nos.2012AA011002 2011AA010706 国家科技重大专项"核高基"项目Nos.2010ZX01042-002002-02 2010ZX01042-001-003-05 深港创新圈项目No.JSE201007160004A~~
关键词 时空数据 移动通信 区域查询 并发 索引 spatial-temporal data telecommunication range query concurrent index
  • 相关文献

参考文献16

  • 1Dittrich J, Blunschi L, Salles M A V. Indexing moving objects using short-lived throwaway indexes[C]//LNCS 5644: Proceedings of the 1 lth International Symposium on Advances in Spatial and Temporal Databases (SSTD '09), Aalborg, Denmark, 2009. Berlin, Heidelberg: Springer-Verlag, 2009: 189-207.
  • 2idlauskas D, Ross K A, Jensen C S, et al. Thread-level par- allel indexing of update intensive moving-object workloads[C]// LNCS 6849: Proceedings of the 12th International Sympo- sium on Advances in Spatial and Temporal Databases (SSTD '11), Minneapolis, USA, 2011. Berlin, Heidelberg: Springer-Verlag, 2011: 186-204.
  • 3idlauskas D, altenis S, Jensen C S. Parallel main-memory indexing for moving-object query and update workloads[C]// Proceedings of the 2012 ACM SIGMOD International Con- ference on Management of Data (SIGMOD ' 12). New York, NY, USA: ACM, 2012: 37-48.
  • 4Guttman A. R-trees: a dynamic index structure for spatial searching[C]//Proceedings of the 1984 ACM SIGMOD Inter- national Conference on Management of Data (SIGMOD '84). New York, NY, USA: ACM, 1984: 47-57.
  • 5Finkel R A, Bentley J L. Quad trees: a data structure for retrieval on composite keys[J]. Acta Informatica, 1974, 4(1): 1-9.
  • 6Tropf H, Herzog H. Multidimentional range search in dynam- ically balanced trees[J]. Angewandte Informatik, 1981, 4(1): 71-77.
  • 7Komacker M, Banks D. High-concurrency locking in R-trees[C]// Proceedings of the 21st International Conference on Very Large Data Bases (VLDB '95). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 1995: 134-145.
  • 8Kornacker M, Mohan C, Hellerstein J M. Concurrency and recovery in generalized search trees[C]//Proceedings of the 1997 ACM SIGMOD International Conference on Manage- ment of Data (SIGMOD '97). New York, NY, USA: ACM, 1997: 62-72.
  • 9Ng V, Kameda T. Concurrent access to R-trees[C]//LNCS 692:Proceedings of the 3rd International Symposium on Advances in Spatial Databases (SSD '93), Singapore, 1993. Berlin, Heidelberg: Springer-Verlag, 1993: 142-161.
  • 10Rastogi R, Seshadri S, Bohannon P, et al. Logical and physical versioning in main memory databases[C]//Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB '97), Athens, Greece, 1997. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 1997: 86-95.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部