期刊文献+

Pass-Join-K:多分段匹配的相似性连接算法

Pass-Join-K: Similarity Join Method Based on Multi-Match Partition
下载PDF
导出
摘要 相似性连接是数据清理工作的基本模型,获得了大量数据库工作者的关注。研究了基于编辑距离的相似性连接问题,即在两个字符串集合中寻找编辑距离小于一个阈值的字符串对,并在Pass-Join算法的基础上,提出了一个新的Pass-Join-K算法。Pass-Join—K算法在长短字符串上都有很好的表现。该算法的主要思想是利用Pass-Join算法的划分原理,以多次匹配的方式,达到更加严格地选取候选配对的目的。实验结果显示,Pass-Join-K算法减少了候选对的数量,在实际数据集上相比元算法在运行时间上有2~5倍的提升。 Similarity join is the basic model of data cleaning in the database research and has attracted lots of attention from the database community. This paper studies the edit distance based similarity join, which finds similar strings from two large sets of strings whose edit distance is less than a given threshold, and proposes an improved Pass-Join algorithm, named Pass-Join-K. Pass-Join-K is efficient both for short strings and long strings. The main idea of Pass-Join-K is to divide the query string into more parts based on the partition strategy of Pass-Join, and filter the candidate string pairs more strictly by multi-match. The experimental results show that Pass-Join-K can decrease the candidate pairs, and run 2-5 times more quickly than the origin algorithm which outperforms state-of-the-art methods on real datasets.
出处 《计算机科学与探索》 CSCD 2013年第10期924-932,共9页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.61102136 61001013 福建省自然科学基金No.2011J05158 深圳市科技创新基础研究No.JCYJ20120618155655087~~
关键词 编辑距离 相似性连接 多次匹配 数据清理 Pass—Join—K算法 edit distance similarity join multi-match data cleaning Pass-Join-K
  • 相关文献

参考文献15

  • 1Chaudhuri S, Ganti V, Kaushik R. A primitive operator for similarity joins in data cleaning[C]//Proceedings of the 22nd International Conference on Data Engineering (ICDE '06). Washington, DC, USA: IEEE Computer Society, 2006: 5.
  • 2Gravano L, Ipeirotis P G, Jagadish H V, et al. Approximate string joins in a database (almost) for fi'ee[C]//Proceedings of the 27th International Conference on Very Large Data Bases (VLDB '01), Rome, Italy, 2001. San Francisco, CA, USA:Morgan Kaufmann Publishers Inc, 2001: 491-500.
  • 3Arasu A, Ganti V, Kaushik R. Efficient exact set-similarity joins[C]//Proceedings of the 32nd International Conference on Very large data bases (VLDB '06), Seoul, Korea, 2006: 918-929.
  • 4Bayardo R J, Ma Yiming, Srikant R. Scaling up all pairs sim- ilarity search[C]//Proceedings of the 16th International Con- ference on World Wide Web (WWW '07), Alberta, Canada, 2007. New York, NY, USA: ACM, 2007: 131-140.
  • 5Xiao Chuan, Wang Wei, Lin Xuemin, et al. Efficient similarity joins for near duplicate detection[C]//Proceedings of the 17th International Conference on World Wide Web (WWW '08), Beijing, China, 2008. New York, NY, USA: ACM, 2008: 131-140.
  • 6Xiao Chuan, Wang Wei, Lin Xuemin. Ed-join: an efficient algorithm for similarity joins with edit distance constraints[J]. Proceedings of the VLDB Endowment, 2008, 1(1): 933-944.
  • 7Wang Jiannan, Feng Jianhua, Li Guoliang. Tile-join: efficient Trie-based string similarity joins with edit-distance con- straints[J]. Proceedings of the VLDB Endowment, 2010, 3(1/2): 1219-1230.
  • 8Li Guoliang, Deng Dong, Wang Jiannan, et al. Pass-join: a partition-based method for similarity joins[J]. Proceedings of the VLDB Endowment, 2011, 5(3): 253-264.
  • 9Wagner R A, Fischer M J. The string-to-string correctionproblem[J]. Journal of the ACM, 1974, 21(1): 168-173.
  • 10Masek W J, Paterson M. A faster algorithm computing string edit distances[J]. Journal of Computer and System Sciences, 1980, 20(1): 18-31.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部