期刊文献+

一种基于AEA的约束优化算法μ-AEA

A μ-AEA Constraint Optimization Algorithm Based on AEA
下载PDF
导出
摘要 提出一种基于AEA算法的约束处理方法,该方法通过引入在迭代中自适应调整的松弛参数μ,逐渐缩小相对可行域直至收敛到可行域,且充分考虑到不同函数具有不同的可行域大小的情况.松弛约束的引入能允许包含有用信息的不可行解进入到子代种群中,增加算法的搜索能力.同时,引入一种自适应惩罚函数法,它利用不同约束条件满足的难易程度来自适应地调整惩罚系数,保证惩罚力度不会过大或过小.通过11个标准测试函数实验表明,该方法具有较满意的结果,在处理工程约束优化问题方面具有很大的潜力. A constrained handling method based on the Alopex-based evolutionary algorithm (AEA) is proposed. The relatively feasible region is gradually converged to the feasible region by the introducing adaptive relaxation parameter μ in the iteration, which takes into account that different functions have different sizes of feasible regions. Also the relaxation of constraints allows more infeasible individuals which contain some useful information to keep staying in the next generation. And therefore it enhances search ability of the algorithm. At the same time, an adaptive penalty function method is introduced, and it adaptively adjusts the penalty coefficient based on the different constraint satisfactions. Thus, it ensures that the punishment is not too large or too small. 11 standard test function experiments show that the proposed method has satisfactory results and great potential in handling works with constraint optimization problems.
作者 王振 李绍军
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第9期859-864,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.20976048,21176072)
关键词 AEA算法 约束优化问题 惩罚函数法 Alopex-Based Evolutionary Algorithm (AEA), Constraint Optimization Problem, PenaltyFunction Method
  • 相关文献

参考文献2

二级参考文献24

  • 1张兵,陈德钊,饶骏.优进策略支持的进化规划估计反应动力学参数[J].高校化学工程学报,2004,18(5):638-642. 被引量:5
  • 2李绍军,张绪杰,王惠,钱锋.利用Alopex改进的粒子群优化算法及其在软测量建模中的应用[J].华东理工大学学报(自然科学版),2006,32(9):1104-1108. 被引量:2
  • 3刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 4倪庆剑,邢汉承,张志政,王蓁蓁,文巨峰.粒子群优化算法研究进展[J].模式识别与人工智能,2007,20(3):349-357. 被引量:68
  • 5Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor, USA: University of Michigan Press, 1975.
  • 6Kennedy J, Eberhart R. Particle Swarm Optimization//Proc of the IEEE International Conference on Neural Networks. Perth, Australia, 1995:1942-1948.
  • 7Storn R. Differential Evolution Design of an IIR Filter//Proc of the IEEE International Conference on Evolutionary Computation. Nagoya, Japan, 1996 : 268 -273.
  • 8Elbehagi E, Hegazy T, Grierson D. Comparison among Five Evolutionary-Based Optimization Algorithm. Advanced Engineering Informatics, 2005, 19(1 ): 43-53.
  • 9Coello C A C. Theoretical and Numerical Constraint-Handling Techniques Used with Evolutionary Algorithms: A Survey of the State of the Art. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11/12) : 1245 -1287.
  • 10Bia A. Alopex-B: A New, Simpler, But Yet Faster Version of the Alopex Training Algorithm. International Journal of Neural Systems, 2001, 11(6) : 497 -507.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部