期刊文献+

NO及NH_3在MnO表面吸附行为的计算研究

Computational Study on the Adsorption Behavior of NO and NH_3 Molecules on the MnO Surface
原文传递
导出
摘要 选取MnO(111)、(110)及(001)晶面超晶胞做为反应表面模型,运用DFT中GGA的PBE方法,探讨了NO及NH3分子在MnO(111)、MnO(110)、MnO(001)面上的吸附行为,结果表明,NO及NH3均在MnO(111)面的top-Mn位上较易吸附,且NO吸附能较大。通过Mulliken布局数及态密度分析发现,在NO及NH3的吸附过程中,气体分子与吸附衬底之间发生了较强的相互作用。NO吸附时电子从衬底转移到N原子上,得到NO-阴离子结构,而NH3吸附后电子则从N原子转移到衬底上。Mn原子通过3d、4s轨道与NO及NH3中的N形成了化学键,使吸附更加稳定。 The density functional theory (DFT) based on GGA-PBE method has been used to study the adsorption be-havior of NO and NH3 molecules on the MnO (111) . (110) and (001) surface. The results showed that both NO and NH3 were easily to be adsorbed on the MnO(111) surface of the top-Mn site and the adsorption energy of NO was bigger. The analysis of the Mulliken charges and the density of state (DOS) reflected that during the adsorption of NO and NH3, there was a strong interaction occurred between the gas molecule and the adsorption substrate. The electron moved from the adsorption substrate to the Nitrogen atom during the NO adsorption progress and obtained the NO anion struc-ture. However, the electron transferred from the Nitrogen atom to the substrate after the adsorption of NH3. The Manga- nese atom formed a chemical bond with Nitrogen atom with 3d and 4s orbitals while NO and NH3 were absorbed.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2013年第9期1-5,共5页 Journal of Wuhan University of Technology
基金 国家"十二五"科技支撑计划(2011BAE29B02)
关键词 密度泛函理论(DFT) MnO(111)晶面 NO NH3 吸附 density functional theory(DFT) MnO(111) NO NH3 adsorption
  • 相关文献

参考文献12

  • 1Koebel M, Madia G, Elsener M, et al. Selective Catalytic Reduction of NO and NO2 at Low Temperature[J]. Catal Today, 2002, 73 (3-4): 239-247.
  • 2Peng Yue, Li Junhua, Shi Wenho,et al. Design Strategies for Development of SCR Catalyst: Improvement of Alkali Poisoning Resistance and Novel Regeneration Method[J]. Environ Sci Technol, 2012, 46: 12623-12629.
  • 3朱丽丽.基于碳纳米管的低温SCR反应机理的分子模拟研究[D].广州:华南理工大学,2012.
  • 4Yuan Deling, Li Xinyong , Zhao Qidong,et al. Effect of Surface Lewis Acidity on Selective Catalytic Reduction of NO by C4 H6 over Calcined Hydrotalcite[J]. Appl Catal A: General, 2013,451:176-183.
  • 5Segalli M D, Lindan P L D, Probert M J, et al. First-principles Simulation: Ideas, Illustrations and the CASTEP Code[J]. J Phys Condens Matter, 2002,14: 2717-2745.
  • 6Vanderbilt D. Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Phys Rev B,1990,41:7892-7895.
  • 7Perdew J P, Zunger A. Self-interaction Correction to Density-functional Approximations for Many-electron Systems[J]. Phys Rev B, 1981,23.. 5048- 5079.
  • 8Evarestov R A, Smimov V P. Modification of the Monkhorst-pack Special Points Meshes in the Brillouin Zone for Density Functional Theory and Hrrtee-fock Calculations-J]. Phys Rev B, 2004,70(23): 233101.
  • 9Zhang J. Room-temperature Compressibilities of MnO and CdO:Further Examination of the Role of Cation Type in Bulk Modulus Systematics[J]. Phys Chem Minerals, 1999,26:644-648.
  • 10Enrico Tronconi, Isabella Nova. Redox Features in the Catalytic Mechanism of the"Standard" and "Fast"NHa-SCR of NOx over a V-based Catalyst Investigated by Dynamic Methods[J]. J Catal,2007, 245 (1): 1-10.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部