期刊文献+

基于自适应的高对比性子空间的高维离群点检测 被引量:2

Mining outlier in high dimensional space based on adaptive high contrast subspace
下载PDF
导出
摘要 基于子空间解决高维离群点挖掘的问题已经引起人们的广泛关注,现有方法存在的主要问题是难以选取合适的子空间且选取计算量大、阈值等参数设置困难等。这些影响了检测精度和检测效率。利用高对比度子空间选取方法解决子空间选取问题,利用自适应方法解决阈值参数的确定问题,据此提出自适应的高对比性子空间离群点检测方法(AHiCS)。该方法利用统计检验算法选取高对比性子空间,在高对比性的子空间里自适应计算离群点得分,提高了离群点检测的精度与效率。理论和实验表明,该方法可以有效地挖掘高维离群点。 Detecting outlier in high dimensional space based on subspace has aroused extensive attention, the main problems that existing methods have are:difficult to select the appropriate subspace and set the threshold parameter,calculation and se- lection cost much time. These affect the detection accuracy and efficiency. This paper used high contrast subspace to solve the problem for selecting subspace, and used adaptive method to solve the threshold parameter, so it proposed the outlier detection method based on adaptive high contrast subspace (AHiCS). The method used statistical test algorithm of selecting the high con- trast subspace and calculate outlier score under the finding subspace. It improved the accuracy and efficiency of the outlier de- tection. Theoretical and experimental results show that the method can effectively detect outliers.
出处 《计算机应用研究》 CSCD 北大核心 2013年第10期2940-2943,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60773049) 江苏省科技型企业创新资金资助项目(BC2010172) 江苏大学高级专业人才科研启动基金项目(09JDG041) 高校博士点基金资助项目(20093227110005)
关键词 高维空间 离群点检测 子空间 高对比性 自适应得分 high-dimension space outlier detection subspace high contrast adaptive score
  • 相关文献

参考文献12

  • 1薛安荣,姚林,鞠时光,陈伟鹤,马汉达.离群点挖掘方法综述[J].计算机科学,2008,35(11):13-18. 被引量:69
  • 2ROUSSEEUW P,LEROY A. Robust regression and outlier detection[M]. [S.l.] : Wiley, 1987.
  • 3HE Zeng-you,XU Xiao-fei, DENG Sheng-chun. Discovering cluster-'based local outlier[J]. Pattern Recognition Letters,2003,24 ( 9-10):1641-1650.
  • 4BARNETT V,LEWIS T. Outliers in statistical data[ M]. [ S. 1.].Wiley, 1994.
  • 5BREUIG M M,KRIEGEL H P,NG R T,e( al. LOF:identifying densi-ty-based local outliers [ C] //Proc of ACM SIGMOD International Con-ference on Management of Data. 2000:93-104.
  • 6AGGARWAL C C, YU P S. Outlier detection for high dimensionaldata[ C]//Proc of ACM SIGMOD International Conference on Man-agement of Data. 2001:37-46.
  • 7BAUMGARTNER C,PLANT C, RAILING K, et al. Subspace selec-tion for clustering high-dimensional data[ C] //Proc of the 4th IEEEInternational Conference on Data Mining. 2004 : 11 -18.
  • 8NIU Dong-lin, DY J G,JORDAN M I. Multiple non-redundant spec-tral clustering views [ C]//Proc of ICML.-2010 :831-838.
  • 9KELLER F, MULLER E,B0HM K. HiCS:high contrast subspacesfor density-based outlier ranking[ C] //Proc of the 28th IEEE Interna-tional Conference on Data Engineering. 2012.
  • 10MULLER E,SCHIFFER M,SEIDL T. Statistical selection of relevantsubspace projections for outlier ranking [ C]//Proc of the 27th IEEEInternational Conference on Data Engineering. 2011:434-445.

二级参考文献63

  • 1文俊浩,吴中福,吴红艳.空间孤立点检测[J].计算机科学,2006,33(5):186-187. 被引量:5
  • 2杨宜东,孙志挥,朱玉全,杨明,张柏礼.基于动态网格的数据流离群点快速检测算法[J].软件学报,2006,17(8):1796-1803. 被引量:22
  • 3汪加才,张金城,江效尧.一种有效的可视化孤立点发现与预测新途径[J].计算机科学,2007,34(6):200-203. 被引量:5
  • 4薛安荣,鞠时光.基于空间约束的离群点挖掘[J].计算机科学,2007,34(6):207-209. 被引量:12
  • 5赵科平,周水庚,关佶红,等.一种新的离群数据对象发现方法∥中国人工智能学会第10届全国学术年会论文集.北京:北京邮电大学出版社,2003.
  • 6Aggarwal C C, Yu P. Outlier detection for high dimensional dataft Proc. of the ACM SIGMOD International Conference on Management of Data. Santa Barbara, 2001:37-47
  • 7Angiulli F, Pizzuti C. Outlier Mining in Large High Dimensional Data Sets. IEEE Trans. Knowledge and Data Eng. , 2005, 2 (17) :203-215
  • 8Angiulli F, Basta S, Pizzuti C. Distance-based detection and prediction of outlier. IEEE Trans. Knowledge and Data Eng. , 2006, 2(18): 145-160
  • 9Aggarwal C C. Re - designing Distance Functions and Distance - based Applications for High Dimensional Data. SIGMOD Record Date, 2001, 30(1):13-18
  • 10Yu Dantong, Gholamhosein S, Zhang Aidong. FindOut: Finding Outliers in Very Large Datasets. Knowledge and Information Systems, 2002,4 (4) : 387-412

共引文献68

同被引文献10

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部