期刊文献+

基于粗糙集的大学生满意度调查应用研究 被引量:3

College students satisfaction survey application research based on rough set
下载PDF
导出
摘要 为了更好地了解大学生对学校服务的满意程度,完善管理,以某校的大学生满意度调查数据为基础,利用粗糙集理论进行数据分析,根据数据分析结果将学生满意度评测指标进行分类后进行分级处理,对分级指标各属性子集再进行约简及权重的确定来评测大学生对学校办学的各分项的满意度,最后通过汇总各分项数据得到学生对学校满意度的综合评价。通过几年的实施,此方法能很好地反映出学生对学校办学的满意程度,收到了良好的效果。 In order to better understand the college students' satisfaction with the services of the college, and improve the management, this paper took a college students' satisfaction survey data as the foundation, and used rough set theory in data analysis. First of all, according to the results of data analysis, it classified student satisfaction evaluation indicators, then re- duced and weighted the grading index of each attribute subset to determine the evaluation of college students of the university each kinds of satisfaction. Finally through the summary all kinds of data, it got the student to the university of the satisfaction degree of the comprehensive evaluation, through years of implementation, this method can well reflect the student satisfaction of college education, has received good results.
作者 李建林
出处 《计算机应用研究》 CSCD 北大核心 2013年第10期2991-2995,共5页 Application Research of Computers
基金 江苏省2010年度青蓝工程骨干教师资助项目(苏教2010-16) 南信院2012年度院科研基金重点资助课题(YKJ12-005)
关键词 粗糙集 属性约简 学生满意度 分级指标 综合评价 rough set attribute reduction student satisfaction hierarchical indicator comprehensive evaluation
  • 相关文献

参考文献13

二级参考文献70

共引文献240

同被引文献40

  • 1王丽,冯山.基于模糊粗糙集的两种属性约简算法[J].计算机应用,2006,26(3):635-637. 被引量:10
  • 2黄伟力.国内外高校公共选修课的设置情况分析及对高校思想政治理论课配套选修课建设的启示[J].高教探索,2007(4):100-103. 被引量:46
  • 3付海艳,符谋松,张诚一.粗糙集理论在高校教学质量评价分析中的应用[J].计算机工程与应用,2007,43(36):214-216. 被引量:31
  • 4ZADEH L A. Fuzzy sets[J].Information and Control ,1965,8(3):338-356.
  • 5DUBOIS D,PRADE H. Rough fuzzy sets and fuzzy rough sets[J].International Journal of general Systems,1990,17(2-3):191-209.
  • 6JENSENe R,SHEN Qiang. Fuzzy-rough attribute reduction with application to Web categorization[J].Fuzzy Sets and Systems,2004,144(3):469-485.
  • 7BHATT R B,COPAL M. On fuzzy-rough sets approach to feature selection[J].Pattern Recognition Letters,2005,26(7):965-975. [7] JENSENE R,SHEN Qiang. New approaches to fuzzy-rough feature selection[J].IEEE Trans on Fuzzy Systems,2009,17(4):824-838.
  • 8ZHAO Su-yun,CHEN Hong,LI Cui-ping,et al. RFRR:robust fuzzy rough reduction[J].IEEE Trans on Fuzzy Systems,2013,21(5):825-841.
  • 9JENSENE R,SHEN Qiang. Fuzzy-rough sets assisted attribute selection[J].IEEE Trans on Fuzzy Systems,2007,15(1):73-89.
  • 10TSANG E,CHEN De-gang,YEUNG D,et al. Attributes reduction using fuzzy rough sets[J].IEEE Trans on Fuzzy Systems,2008,16(5):1130-1141.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部