期刊文献+

用Si’lnikov定理构造一个新的混沌系统 被引量:2

Constructing new chaotic system based on Si'lnikov theorem
下载PDF
导出
摘要 利用Si’lnikov定理构造一个含有平方项的三维混沌系统,且系统有两个平衡点,有一个是鞍焦平衡点,构造的过程表明该混沌具有Smale马蹄(同宿轨混沌)。在满足同宿轨道Si’lnikov定理条件下可以找出大量的参数值,使得系统处于混沌状态。数值仿真验证了该方法的有效性。最后,用待定系数法找到系统中存在Smale马蹄,因而是Si’lnikov意义下的混沌。 Based on the Si' lnikov theorem, this paper proposed a new three-dimensional square chaotic system, which had tow equilibrium poits. There was hyperbolic saddle focus. The formation mechanism showed that this chaotic system had Smale horseshoes(homoclinic chaos). Under satisfying the homoclinic Si' lnikov theorem, the large number of parameter values, which could be found, made that the system was chaotic state. Numerical simulation results show the effectiveness of the theo- retical results. Finally, Smale horseshoses had been found in the system using undetermined-coefficient method, and it was chaotic in the sense of Si' lnikov.
出处 《计算机应用研究》 CSCD 北大核心 2013年第10期3038-3040,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(61172023) 广东省自然科学基金资助项目(S2011010001028) 高等学校博士学科点专项科研基金资助项目
关键词 新的混沌系统 同宿轨道 Si’lnikov定理 待定系数法 斯梅尔马蹄 new chaotic system homoclinic orbit Si'lnikov theorem undetermined coefficient method Smale horseshoe
  • 相关文献

参考文献15

  • 1LORENZ E N. Deterministic non-periods follows [ J]. Journal of theAtmospheric Sciences, 1963,20(2) :130-141.
  • 2UETA T, CHEN Guan-rong. Bifurcation analysis of Chen, attractor[J]. International Journal of Bifurcation and Chaos,2000,10(8)-.1917-1931.
  • 3LV Jin-hu,CHEN Guan-rong. A new chaotic attractor coined[ J]. In-ternational Journal of-Bifurcation and Chaos,2002,12(3) :659-661.
  • 4LIU Chong-xin,LIU Ling,LIU Tao. A novel three-dimensional autono-mous chaos system [ J]. Chaos,Solitions and Fractals,2009,39(4):1950-1958.
  • 5张建雄,唐万生,徐勇.一个新的三维混沌系统[J].物理学报,2008,57(11):6799-6807. 被引量:18
  • 6冯朝文,蔡理,康强,张立森.一种新的三维自治混沌系统[J].物理学报,2011,60(3):101-107. 被引量:18
  • 7ZHOU Tian-shou, CHEN Guan-rong, YANG Qi-gui. Constructing anew chaotic system based on Si, lnikov criterion[ J]. Chaos Solitonsand Fractals,2004,19(4) :985-993.
  • 8SILVA C. Si, lnikov theorem:a tutorial [ J] . IEEE Trans on CircuitsSystem 1,1993,40(10) :678-682.
  • 9ZHOU Tian-shou,TANG Yun,CHEN Guan-rong. Chen's attractor ex-ists [J]. International Journal of Bifurcation and Chaos,2004,14(9):3167-3177.
  • 10JIANG Yong-xin,SUN Jian-hua. Si,lnikov homoclinic orbits in a newchaotic system [ J]. Chaos, Solitons & Fractals,2007,2( 1) :150-159.

二级参考文献22

共引文献34

同被引文献25

  • 1Lorenz E N. Deterministic nonperiodie flow[ J]. Journal of the At- mospheric Sciences, 1963,20(2) : 130-141.
  • 2Pecora L M, Carroll T L. Synchronization in chaotic systems [ J]. Physical Review Letters, 1990,64 ( 8 ) : 821 - 824.
  • 3Zeeb S, Dahms T, Flunkert V, et al. Discontinuous attractor (timcn- sion at the synchronization transition of time-delayed chaotic systems [J]. Physical Review E,2013,87(4) :042910.
  • 4Zhang Xiaoming, Chen Jufang, Peng Jianhua. Generalized hetero- chronous synchronization in coupled time-delayed chaotic systems [J]. Nonlinear Dynamics,2014,78(4) :2421-2428.
  • 5Bilal S, Ramaswamy R. The generalized time-delayed Henon map: bifurcations and dynamics [ J ]. International Journal of Biturcation and Chaos ,2013,23 ( 3 ) : 1350045.
  • 6Luo R Z,Zhang C H. Chin.Phys.B . 2015
  • 7Nguyen L H,Hong K S. Appl.Math.Modell . 2013
  • 8Yan-Qiu Che,Jiang Wang,Kai-Ming Tsang,Wai-Lok Chan.??Unidirectional synchronization for Hindmarsh–Rose neurons via robust adaptive sliding mode control(J)Nonlinear Analysis: Real World Applications . 2009 (2)
  • 9Jiezhi Wang,Zengqiang Chen,Zhuzhi Yuan.??Existence of a new three-dimensional chaotic attractor(J)Chaos, Solitons and Fractals . 2009 (5)
  • 10Silva,Christopher P.Shil’nikov’s theorem - a tutorial. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications . 1993

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部