摘要
为了提高二维阈值分割法处理速度,提出了二维Otsu法的快速实现方法。基于二维随机变量的边缘概率分布,将二维最佳阈值(s*,t*)的求解拆分成两个一维最佳阈值s*和t*的求解;同时为了改善原算法的分割效果,引入类内方差的定义,提出了新的最佳阈值判别式。实验结果表明,本方法不仅保留了原二维阈值法抗噪性强的特点,其时间复杂度由O(L4)降为O(L),空间复杂度由S(L2)降为S(L),且分割错误率低于原二维Otsu法。该方法适合处理高斯噪声图像的快速阈值分割问题。
In order to improve 2D thresholding algorithm' s processing speed, this paper presented a fast implementation method of 2D Otsu. Based on marginal probability distribution of bivariate discrete random variable, it calculated two 1 D opti- mal threshold, s * and t" , and then kept (s * ,t * ) as the optimal 2D Otsu threshold. Furthermore, in order to improve the seg- mentation of the original algorithm, this paper introduced the definition of intra-class variance and proposed a new discrimi- nant. The experimental results show that the proposed algorithm outperforms original algorithm. Without losing the robustness to noise, its time complexity is reduced from O ( L4 ) to O ( L), space complexity is reduced from S (L2 ) to S (L), and the mis- classification rate is lower. The method is suitable for handling the fast threshold segmentation of Gaussian noise images.
出处
《计算机应用研究》
CSCD
北大核心
2013年第10期3169-3171,3200,共4页
Application Research of Computers
基金
国家自然科学基金重点资助项目(61134002)
国家自然科学基金资助项目(60971103)
关键词
图像处理
阈值分割
二维OTSU
类间方差
类内方差
边缘概率分布
image processing
threshold segmentation
2D Otsu
inter-class variance
intra-class variance
marginal proba-bility distribution