期刊文献+

特征选择的和声模糊聚类研究与应用

Research and application of harmony search fuzzy clustering with feature selection
下载PDF
导出
摘要 采取了3种必要的措施提高了聚类质量:考虑到各维数据特征属性对聚类效果影响不同,采用了基于统计方法的维度加权的方法进行特征选择;对于和声搜索算法的调音概率进行了改进,将改进的和声搜索算法和模糊聚类相结合用于快速寻找最优的聚类中心;循环测试各种中心数情况下的聚类质量以获得最佳的类中心数。该算法被应用于并行计算性能分析中,用于识别并行程序运行时各处理器运行性能瓶颈的类别。实验结果表明该算法较其他算法更优,这样的性能分析方法可以提高并行程序的运行效率。 Three methods are adopted to achieve a better clustering quality. Considering the different influences of each dimen-sion attribute of data on the clustering effect, statistic method is used to weight each dimension to select feature. Some improve-ments are carried out for the probability of harmony search algorithm and combine fuzzy clustering algorithm with harmony search to rapidly find the optimal cluster centers. The iterative method is used to test clustering quality to get the best number of cluster center. The proposed algorithm is applied to parallel computing performance analysis to distinguish and identify the per-formance bottleneck category of various processors during parallel program running. Experimental results show that the pro-posed clustering algorithm outperforms other similar algorithms. This performance analysis method can improve the operating efficiency of the parallel program.
出处 《计算机工程与应用》 CSCD 2013年第19期112-118,共7页 Computer Engineering and Applications
基金 教育部人文社会科学研究青年基金(No.10YJC870037) 重庆市教委科学研究资助项目(No.KJ100805)
关键词 和声搜索 模糊聚类 特征选择 并行性能分析 harmony search fuzzy clustering feature selection parallel performance analysis
  • 相关文献

参考文献14

  • 1罗印升,李人厚,张维玺.一种基于克隆选择的聚类算法[J].控制与决策,2005,20(11):1261-1264. 被引量:7
  • 2徐晓华,陈崚.一种自适应的蚂蚁聚类算法[J].软件学报,2006,17(9):1884-1889. 被引量:55
  • 3李帅,王新军,高丹丹.基于内部空间特性的PSO聚类算法[J].计算机工程,2009,35(5):197-199. 被引量:6
  • 4Geem Z W, Kim J H, Loganathan G V.A new heuristic optimi- zation algorithm : harmony search[J].Simulation, 2001,76 (2) : 60-68.
  • 5Alia O,Mandava R,Aziz M.A hybrid harmony search algo- rithm for MRI brain segmentation[J].Evolutionary Intelli- gence,2011,4(1) :31-49.
  • 6Forsati R,Meybodi M R,Mahdavi M, et al.Hybridization of K-means and harmony search methods for Web page clus- tering[C]//Proceedings of International Conference on Web Intelligence and Intelligent Agent Technology,2008:329-335.
  • 7Ayvaz M T.Simultaneous determination of aquifer parameters and zone structures with fuzzy C-means clustering and meta- heuristic harmony search algorithm[J].Advances in Water Resources, 2007,30( 11 ) : 2326-2338.
  • 8Law M H, Figueiredo M A, Jain A K.Simultaneous feature selection and clustering using mixture models[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2004,26(9) : 1154-1166.
  • 9Dy J,Brodley G C E,Mach J.Feature selection for unsuper- vised learning[J].Journal of Machine Learning Research,2004, 5 : 845-889.
  • 10Sarvari H, Khairdoost N, Fetanat A.Harmony search algorithm for simultaneous clustering and feature selection[C]// Proceedings of International Conference on Soft Computing and Pattern Recognition,2010:202-207.

二级参考文献23

  • 1徐晓华,陈崚.一种自适应的蚂蚁聚类算法[J].软件学报,2006,17(9):1884-1889. 被引量:55
  • 2Last M, Klein Y, Kandel A. Knowledge Discovery in Time Series Databases[J]. IEEE Trans. on Systems Man and Cybernetics, 2001, 31(1): 160-169.
  • 3Kennedy J, Eberhart R C. Particle Swarm Optimization[C]//Proc. of IEEE International Conference on Neural Network. [S.l.]: IEEE Press, 1995: 1942-1948.
  • 4Blake C L. UCI Machine Learning Repository of Machine Learning Databases[EB/OL]. (1998-10-20). http://mlearn.ics.uci.edu/data bases/.
  • 5Selim S Z, Ismail U A. K-means-type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality[J]. IEEE Trans. on Pattern Anal. Machine Intell., 1984, 6(6): 81-87.
  • 6Laszlo O M, Mukherjee P S. A Genetic Algorithm that Exchanges Neighboring Centers for K-means Clustering[J]. Pattern Recognition Letters, 2007, 28(16): 2359-2366.
  • 7Han J W, Micheline Kamber. Data Mining: Concept and Techniques [M]. Vermont: Morgan Kaufmann Publishers, 2000.
  • 8Jain A K, Murty M N, Flynn P J. Data Clustering: A Review [J]. ACM Computing Surveys, 1999, 31 (3):264-323.
  • 9Ma S, Wang T J, Tang S W, et al. A New Fast Clustering Algorithm Based on Reference and Density[M]. Berlin: Springer-Verlag, 2003.
  • 10Shelokar P S, Jayaraman V K, Kulkarni B D. An Ant Colony Approach for Clustering[J]. Analytica Chimica Acta, 2004, 509(2): 187-195.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部