期刊文献+

基于最大后验估计的无监督聚类算法 被引量:2

Unsupervised clustering algorithm based on Maximum a Posteriori
下载PDF
导出
摘要 传统的基于EM算法的聚类方法,当模型的某个高斯分量的协方差矩阵变为奇异矩阵时,会导致聚类失败。提出在聚类过程中用最大后验估计(MAP)来代替极大似然估计(MLE);将一种改进的贝叶斯信息准则(BIC)与模型参数估计同时处理,扩大了模型选择的搜索范围。该算法有效地避免了协方差矩阵在迭代中陷入奇异,并将参数估计和模型选择同时进行。通过R软件进行仿真分析,结过表明改进的算法在减少计算量同时,提高了聚类的准确度,并具有鲁棒性。 When EM method is used to estimate the maximum likelihood of models, the method will fail because of the covariance matrix become singularity matrix. This paper replaces the Maximum Likelihood Estimation(MLE)by a Maximum a Posteriori (MAP)estimator. By using the improved BIC criterion and the model parameter estimation at the same time, it can enlarge the area of model selection. The algorithm is effective to avoid singularity in the iterations, and uses the improved BIC criterion and the model parameter estimation at the same time. Finally, the R simulation results show that the proposed algorithm decreases the calculation, and improves the accuracy of the cluster, it also has strong robustness.
出处 《计算机工程与应用》 CSCD 2013年第19期131-134,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.10771169)
关键词 混合模型 EM算法 最大后验估计(MAP) 模型选择 聚类 mixture model EM algorithm Maximum a Posteriori(MAP) model selection clustering
  • 相关文献

参考文献12

  • 1Constantinopoulos C, Likas A.Unsupervised learning of Gaussian mixtures based on variational component splitting[J].IEEE Transactions on Neural Networks, 2007,18 (3) : 745-755.
  • 2Figueiredo M, Jain A K.Unsupervised learning of the mixture models[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 2002,24(3) : 381-396.
  • 3Fraley C, Raflery A.Bayesian regularization for normal mixture estimation and model-based clustering[J].Journal of Classifi- cation, 2007,24 : 155-181.
  • 4Ketchantany W, Derrde S, Martin L, et al.Pearson-based mixture model for color object tracking[J].Machine Vision and Applica- tions, 2008,19(5/6) :457-466.
  • 5Dempster A P,Laird N M,Rubin D B.Maximum-likelihood from incomplete data via the EM algorithem[J].J R Statist Soc, 1997,39: 1-38.
  • 6Bilmes J A.A gentle tutorial of the EM algorithm and its appli- cation to parameter estimation for Gaussian mixture and hidden Markov models[R], ICSI Technical Report, 1997 : 97-021.
  • 7Ruan Lingyan, Yuan Ming, Zou Hui.Regularized parameter estimation in high-dimensional Gaussian mixture models[J]. Neural Conputation,2011,23(6) .. 1605-1622.
  • 8Tadjudin S, Landgrebe D.Covaraince estimation for limited training samples[J].Geoscience and Remote Sensing Sympo- sium, 1998,37(4) : 123-128.
  • 9Friedman J F.Regularized discriminant analysis[J].Statist Soc, 1989,84: 17-42.
  • 10Rayens W, Greene T.Covariance pooling and stabilization for classification[J].Computational Statistics and Data Analysis, 1991,11 : 17-42.

同被引文献20

  • 1岳佳,王士同.高斯混合模型聚类中EM算法及初始化的研究[J].微计算机信息,2006,22(11X):244-246. 被引量:51
  • 2王维彬,钟润添.一种基于贪心EM算法学习GMM的聚类算法[J].计算机仿真,2007,24(2):65-68. 被引量:15
  • 3Yang M S,Lai C Y.A robust EM clustering algorithm for Gaussian mixture models[J].Patter Recognition,2012,45(10):3950-3961.
  • 4Dempster A P,Laird N M.Max likelihood from incomplete data via the EM algorithm[J].Journal of the Royal Statistical Society Series B,1997,39(4):1-38.
  • 5Reddy K,Chiang H D,Rajaratnam B.TRUST-TECH-based expectation maximization for learning finite mixture models[J].Computational Statistic&Data Analysis,2013,41(4):561-575.
  • 6Figueiredo M A T,Jain A K.Unsupervised learning of finite mixture models[J].IEEE Transactions on Pattern Analysis,2002,24(6):381-396.
  • 7Lo K,Gottardo R.Flexible mixture modeling via the multivariate distribution with the Box-Cox transformation:an alternative to the skew-t distribution[J].Statistics and Computing,2012,18(5):33-52.
  • 8Caudill S B.A partially adaptive estimator for the censored regression model based on a mixture of normal distributions[J].Statistical Methods and Applications,2012,21(8):121-137.
  • 9Li J Q,Barron A.Mixture density estimation[J].Advances in Neural Information Processing Systems,2000,15(1):279-285.
  • 10何勇,刘青宝.基于动态网格的数据流聚类分析[J].计算机应用研究,2008,25(11):3281-3284. 被引量:6

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部