期刊文献+

一种新的k-medoids聚类算法 被引量:18

New k-medoids clustering algorithm
下载PDF
导出
摘要 针对k-medoids算法对初始聚类中心敏感,聚类精度较低及收敛速度缓慢的缺点,提出一种基于密度初始化、密度迭代的搜索策略和准则函数优化的方法。该算法初始化是在高密度区域内选择k个相对距离较远的样本作为聚类初始中心,有效定位聚类的最终中心点;在k个与初始中心点密度相近的区域内进行中心点替换,以减少候选点的搜索范围;采用类间距和类内距加权的均衡化准则函数,提高聚类精度。实验结果表明,相对于传统的k-mediods算法及某些改进算法,该算法可以提高聚类质量,有效缩短聚类时间。 For the disadvantages that sensitivity to centers initialization, lower clustering accuracy and slow convergent speed of k-medoids algorithm, a novel k-medoids algorithm based on density initialization, density of iterative search strategy and optimi-zation criterion function is proposed. The Initialization of the algorithm is that, it chooses k cluster centers in the high-density area which are far apart, effectively positioning of the final cluster center. To replace the centers are in the ranges which are proximity to the k-initial centers, to reduce the scope of the search candidate point. Criterion function of equalization based on class density and within-class density weighted is adopted to improve the clustering precision. Experimental results show that this algorithm can improve the clustering quality, shorten the clustering time compared with traditional k-medoids algorithms or other improved algorithms.
出处 《计算机工程与应用》 CSCD 2013年第19期153-157,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.11171095,No.10871031) 湖南省自然科学衡阳联合基金(No.10JJ8008) 湖南省教育厅重点项目(No.10A015) 湖南省科技计划项目(No.2011FJ3051)
关键词 聚类 k-medoids算法 密度初始化 目标函数 clustering k-me doids algorithm density initialization criterion function
  • 相关文献

参考文献15

  • 1Han Jiawei,Kamber M.数据挖掘:概念与技术[M].范明,译.北京:机械工业出版社,2007-03.
  • 2Chen Xinquan, Peng Hong, Hu Jingsong.K-medoids subatitution clustering method and a new clustering validity index method[C]// Proc of 6th World Congress on Intelligent Control and Auto- mation, 2006: 5896-5900.
  • 3任晓东,张永奎,薛晓飞.基于K-Modes聚类的自适应话题追踪技术[J].计算机工程,2009,35(9):222-224. 被引量:13
  • 4Mishra N, Motwani R.Optimal time bounds for approximata clustering [J].Machine Learning, 2004,56: 35-60.
  • 5Ben-David S.A k-median algorithm with running time inde- pendent of data size[J].Machine Learning, 2004,56 : 61-87.
  • 6Har-Peled S, Kushal A.Smaller coresets for k-median and k-means clustering[J].Discrete Comput Geom,2007,37:3-19.
  • 7李春生,王耀南.聚类中心初始化的新方法[J].控制理论与应用,2010,27(10):1435-1440. 被引量:23
  • 8Gao Danyang, Yang Bingru.An tering algorithm[C]//Proc of the on Computer and Autonmation 132-135. impronved K-medoids elus- 2nd International Conference Engineering (ICCAE), 2010:.
  • 9Barioni C N M, Razente H L, Traina A J M, et al.Acceleration K-medoids-based algorithms through metric access method[J]. Jourmal of Systerm and Software, 2008,81 (3) : 343-355.
  • 10Park H S, Jun C H.A simple and fast algorithm for k-medoids clusting[J].Expert Systerm with Applications, 2009, 36(2) : 3336-3341.

二级参考文献36

共引文献108

同被引文献189

引证文献18

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部