期刊文献+

多线索融合和区域划分的粒子滤波跟踪算法 被引量:1

Particle filter tracking by fusing multiple cues and tracking local object properties
下载PDF
导出
摘要 提出一种多线索动态融合和目标区域划分的粒子滤波视觉跟踪算法。在粒子滤波框架基础上,选取颜色、纹理、边缘线索于目标模型中,采用带权重的乘性融合策略自适应计算粒子权重,并实时更新目标模型。为增强在遮挡时的跟踪能力,采用局部目标而非整个运动目标作为粒子目标模型。实验结果表明,改进后的算法比简单的线索融合、传统的粒子滤波模型选取方法更能鲁棒并实时地跟踪目标。 This paper presents visual cues fusion and tracking local object properties for object tracking in video sequences using particle filtering. The visual cues, color, edge and texture, form the likelihood of the developed particle filter, a method for self-adaptively weighted product fusion strategy is proposed, and the cues real-time is updated. By using local object properties instead of the global ones, the performance of the tracker is greatly improved when the object undergoes partial occlusion. The results show that the proposal is more robust than simple cue fusing or conventional particle filter, and fast enough for real-time applications.
作者 姜华 范勇
出处 《计算机工程与应用》 CSCD 2013年第19期186-190,共5页 Computer Engineering and Applications
关键词 粒子滤波 多线索 融合策略 遮挡 particle filter multiple cues fusion strategy occlusion
  • 相关文献

参考文献7

  • 1Arulampalam M, Maskell S, Gordon N, et aI.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Trans on Signal Process,2002,50(2):174-188.
  • 2Ying Hongwei,Qiu Xuena.Particle filtering object tracking based on texture and color[C]//Proceedings of 1EEE Confence on Intelligence Information Processing and Trusted Computing. 2010:626-630.
  • 3Morwald T, Zillich M, Vincze M.Edge tracking of textured objects with a recursive particle filter[C]//Proceedings of Graph- icom 2009, Moscow, Russia, 2009,.
  • 4冯桂兰,田维坚,黄昌清,林盘,张帆.基于序贯蒙特卡罗的多线索目标跟踪算法[J].光电工程,2010,37(8):5-11. 被引量:4
  • 5Nummiaro K,Koller-Meier E,Gool L V.An adaptive color- based particle filter[J].Image and Vision Computing,2003,21 (1):99-110.
  • 6Giebel J,Gavrila D,Schnorr.A Bayesian framework for multi- cue 3D object tracking[C]//Proc of Europ Conf on Computer Vision, 2004.
  • 7Duan Z, Cai Z.Adaptive evolutionary panicle filter based object tracking with occlusion handling[C]//Proceedings of the ICNC 2009.2009 : 358-361.

二级参考文献19

  • 1Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-Rigid Objects using Mean Shift [C]//IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA, June 13-15, 2000: 142-151.
  • 2Arulampalam S, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for On-line Non-linear Non-gaussian Bayesian Tracking [J]. IEEE Transactions on Signal Processing(S1053-587X), 2002, 50(2): 174-188.
  • 3Andrieu C, De Freitas N, Doucet A, et al. An Introduction to MCMC for Machine Learning [J]. Machine Learning (S0885-6125), 2003, 50: 5-43.
  • 4Johansson A M, Lehmann E A. Evolutionary Optimization of Dynamics Models in Sequential Monte Carlo Target Tracking [J]. IEEE Transactions on Evolutionary Computation(S1089-778X), 2009, 13(4): 879-894.
  • 5Hue B, Le Cadre J -P, Perez P. Sequential Monte Carlo Methods for Multiple Target Tracking and Data Fusion [J]. IEEE Trans. on SignalProeessing(S1053-587X), 2002, 50(2): 309-325.
  • 6Kyriakides I, Morrell D, Papandreou-Suppappola A. Sequential Monte Carlo Methods for Tracking Multiple Targets with Deterministic and Stochastic Constraints [J]. IEEE Transaetions on Signal Proeessing(S 1053-587X), 2008, 56(3): 937-948.
  • 7Nummiaro K, Koller-Meier E, Gool L. An Adaptive Color-based Particle Filter [J]. Image and Vision Computing (S0262-8856), 2003, 21(1): 99-110.
  • 8Perez P, Hue C, Vermaak J, et al. Color-Based Probabilistic Tracking [C]// Proceedings of the 7th European Conference on Computer Vision-Part l, Copenhagen, May27-30, 2002: 661-675.
  • 9Perez P, Vermaak J, Blake A. Data Fusion for Visual Tracking with Particles [J]. Proceedings of the IEEE(S0018-9219), 2004, 92(3): 495-513.
  • 10Rui Y, Chen Y. Better Proposal Distributions: Object Tracking Using Unscented Particle Filter [C]// Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, 2: 786-793.

共引文献3

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部