期刊文献+

基于最近邻有向图的遥感图像快速分割算法 被引量:5

Fast Remote Sensing Image Segmentation Algorithm Based on Nearest Neighbor Direct Graph
下载PDF
导出
摘要 针对现有的区域生长算法没有考虑到区域之间最近邻关系的有向性这一问题,提出了基于最近邻有向图的遥感图像快速分割算法。首先使用分水岭算法对遥感图像进行初次分割,然后在分割得到的区域对象基础上建立最近邻有向图。在区域生长过程中,沿着有向边形成的路径合并相邻的区域对象。当所有合并完成后重构区域对象的最近邻有向图,进行下一轮合并,直至区域数目不再变化。该方法避免了每次合并一个区域对象就重新计算新的邻居关系,从而降低了计算复杂度。实验结果表明,该方法分割结果比较合理,与其他几种方法相比运行效率明显提高。 The existing region growing algorithms do not take into account the direction of the nearest neighbor rela-tions, which results in frequent rebuilt of the neighbor relations. In this paper,a fast algorithm for remote sensing image segmentation was proposed based on nearest neighbor directed graph. First of all,a remote sensing image was segmen- ted using the watershed algorithm, and then a nearest neighbor directed graph was established on the basis of the region objects of the previous segmentation. In the region growing phrase, the adjacent region objects were merged along the directed edges. When the first round is finished, the nearest neighbor directed graph should be rebuilt, and the second round of region growing is initiated. This process repeats until the region number is no longer changed. This method a- voids recalculating the neighbor relations whenever a merge happens, which reduces the computational complexity. The experimental results show that the algorithm proposed in this paper is more reasonable, more efficient compared with the other three algorithms.
出处 《计算机科学》 CSCD 北大核心 2013年第10期274-278,共5页 Computer Science
基金 国家自然科学基金(40906094)资助
关键词 遥感图像分割 最近邻有向图 区域生长 Remote sensing image segmentation, Nearest neighbor directed graph, Region growing
  • 相关文献

参考文献10

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2Wu jian. Study on Segmentation of Color Remote Sensing Image [J]. Proeedia Engineering, 2012,29 : 3312-3316.
  • 3Manikantan K,Arun B V. Optimal Multilevel Thresholds based on Tsallis Entropy Method using Golden Ratio Particle Swarm Optimization for Improved Image Segmentation [J]. Procedia Engineering, 2012,30 : 364-371.
  • 4Priya G G L,Domnie S. Edge Strength Extraction using Orthog- onal Vectors for Shot Boundary Detection [J]. Procedia Tech- nology, 2012,6 : 247-254.
  • 5Kang C-C, Wang W-J, Kang C-H. Image segmentation with complicated background by using seeded region growing [J]. AEU-Intemational Journal of Electronics and Communications, 2012,66(9) : 767-771.
  • 6Haris K, Efstratiadis S N, Maglaveras N, et al. Hyhrid Image Segmentation Using Watersheds and Fast Region Merging[J]. IEEE Transaction on Image Processing, 1998,7(12) .. 1684-1699.
  • 7Adams R, Bischof L. Seeded Region Growing [J]. IEEE Tran- sactions on Pattern Analysis and Machine Intelligence, 1994,16(6):641- 647.
  • 8汪闽,万其明,张大骞,张青峰.光谱、形状特征结合的多精度图像分割算法与应用[J].地球信息科学学报,2010,12(2):261-268. 被引量:18
  • 9Ding Jun-di, Ma Ru-ning, Chen Song-can, et al. A Fast Directed Tree Based Neighborhood Clustering Algorithm for Image Seg- mentation[J]. Lecture Notes in Computer Science, 2006,4233: 369-378.
  • 10Arafijo A R F,Costa D C. Local adaptive receptive field self-or- ganizing map for image color segmentation[J].Image and Vision Computing, 2009,27 (9) : 1229-1239.

二级参考文献25

  • 1刘健庄,谢维信.高效的彩色图像塔形模糊聚类分割方法[J].西安电子科技大学学报,1993,20(1):40-46. 被引量:5
  • 2刘重庆,程华.分割彩色图像的一种有效聚类方法[J].模式识别与人工智能,1995,8(A01):133-138. 被引量:7
  • 3陈云浩,冯通,史培军,王今飞.基于面向对象和规则的遥感影像分类研究[J].武汉大学学报(信息科学版),2006,31(4):316-320. 被引量:245
  • 4Im J,Jensen J R,Tullis J A.Object-Based Change Detec-tion Using Correlation Image Analysis And Image Segmenta-tion. International Journal of Remote Sensing . 2007
  • 5http://www.definiens.com . 2007
  • 6Baatz M,Schape A.Multiresolution Segmentation:An Opti-mization Approach for High Quality Multi-scale Image Seg-mentation[EB]. http://www.definiens-imaging.com . 2007
  • 7Stoev S L.RaFSi-A Fast Watershed Algorithm Basedon Rainfalling Simulation. Proceedings of8-th In-ternational Conference on Computer Graphics,Visualiza-tion,and Interactive Digital Media . 2000
  • 8Vincent L,Soille P.Watersheds in digital spaces: An efficient algorithm based on immersion simulation. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1991
  • 9Jain R,Kasturi R,Schunck BG.Machine Vision. . 1995
  • 10Haris K,Efstratiadis SN,Maglaveras N,et al.Hybrid image segmentation using watersheds and fast region merging. IEEE Transactions on Image Processing . 1998

共引文献338

同被引文献49

  • 1明冬萍,王群,杨建宇.遥感影像空间尺度特性与最佳空间分辨率选择[J].遥感学报,2008,12(4):529-537. 被引量:67
  • 2王映辉,王立福.软件体系结构演化模型[J].电子学报,2005,33(8):1381-1386. 被引量:23
  • 3陈建裕,潘德炉,毛志华.高分辨率海岸带遥感影像中简单地物的最优分割问题[J].中国科学(D辑),2006,36(11):1044-1051. 被引量:17
  • 4黄昕,张良培,李平湘.基于多尺度特征融合和支持向量机的高分辨率遥感影像分类[J].遥感学报,2007,11(1):48-54. 被引量:48
  • 5Baatz M, Schape A. Muhiresolution segmentation: An op- timization approach for high quality multi-scale image seg- mentation [ J ]. Angewandte Geographische Informationsver- arbeitung, 2000,12 ( 12 ) : 12-23.
  • 6Flanders D, Hall-Beyer M, Pereverzoff J. Preliminary e- valuation of eCognition object-based software for cut block delineation and feature extraction [ J ]. Canadian Journal of Remote Sensing, 2003,29 (4) :441-452.
  • 7Johnson Brain, Xie Zhixiao. Unsupervised image segmen- tation evaluation and refinement using a multi-scale ap- proach [ J ]. International Society for Photogrammetry and Remote Sensing, 2011,2 (6) :473-483.
  • 8Sawada M. Global Spatial Autocorrelation Indices-Moran's I, Geary' s C and the General Cross-Product Statistic [ EB/ OL]. http://www, lpc. uottawa, ca/publications/moransi/ moran, htm, 2014-12-31.
  • 9Smoka J. Watershed based region growing algorithm [ J ]. Annales UMCS Informatica AI, 2005,3 : 169-178.
  • 10Bleau A, Leon L J. Watershed-based segmentation and re- gion merging[J]. Computer Vision and Image Understand- ing, 2000,77 ( 3 ) :317-370.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部