摘要
提出了一种散乱数据的正交表示方法,该方法利用正交GF系统来逼近或插值给定的散乱数据点集。k(k为非负整数)次GF系统是一类正交样条函数系,Haar函数及Franklin正交函数恰好分别是k=0及k=1时的特殊情形。基于GF系统,提出了求解散乱数据问题的新的能量模型,根据该能量模型的频谱,可以对散乱数据进行不同层次的曲面重构。实验结果表明该方法高效且效果良好。
Base on GF system, an orthogonal representation algorithm for scattered data is proposed. When k = 0 and k = 1, GF system are Haar functions and Franklin functions respectively. A new energy model is proposed to solve this problem based on GF system. According to GF spectrum, different hierar- chical surfaces could be reconstructed for scattered data. The experiments show that the method proposed is efficient and can produce pleasing results.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第5期73-77,共5页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家重点基础研究发展计划"973"资助项目(2011CB302400)
澳门科技发展基金资助项目(084/2012/A3
004/2011/A1
006/2011/A1
015/2010/A)
国家自然科学基金面上资助项目(61170320
61272364)
浙江大学CAD&CG国家重点实验室开放课题资助项目(A1310)
广东省自然科学基金资助项目(S2011040002981)
关键词
散乱数据
最佳平方逼近
GF系统
scattered data
least square approximation
GF system