期刊文献+

Blob在托卡马克SOL中的传播行为研究

The propagation of blobs in the scrape-off layer of tokamak
下载PDF
导出
摘要 对托卡马克等离子体刮离层(SOL)中特殊的密度相干结构blob的传播行为进行了数值研究。考虑到模型中静电势假设φ<<1与计算;结果不自洽,故对现有的blob动力学模型进行了改进。结果表明,blob在传播过程中会出现极向密度不对称的分布,并初步分析了密度不对称情况出现的原因。当初始blob强度增大时,其质心速度增加,而偏滤器靶板附近的等离子体鞘层耗散将导致其速度降低,更为重要的是这种耗散较强时将导致一种密度低于本体等离子体密度的新的相干结构,即所谓hole结构的产生。 The propagation of special coherent structures (blobs) in the tokamak scrape-off layer (SOL) is studied numerically. Considering that the hypothesis which assumes that electrostatic potentialφ 〈〈1 in existing model is not self-consistent with numerical results, thus modification i,; done to blob dynamics. Results show that the symmetry of the blob in the poloidal direction is broken and the reason for the symmetry break is discussed briefly. The blob velocity increases with its initial, relative amplitude, while decreases with the rising of plasma sheath dissipation near the divertor plate. It should be emphasized that a new type of coherent structures with density lower than the bulk plasmas referred to as holes appears in the presence of strong sheath dissipation.
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2013年第3期206-213,共8页 Nuclear Fusion and Plasma Physics
基金 国家磁约束核聚变研究专项资助项目(2010GB106006 2013GB111005) 国家自然科学基金资助项目(11275061 11205053)
关键词 BLOB 静电势 SOL 等离子体鞘层耗散 Blob Electrostatic potential SOL Plasma sheath dissipation
  • 相关文献

参考文献39

  • 1Goodall D H J. High speed cine film studies of plasma behaviour and plasma surface interactions in tokamaks [J]. J. Nucl. Mater., 1982, ll1-112(0): 11-22.
  • 2Zweben S J. Search for coherent structure within tokamak plasma turbulence [J]. Phys. Fluids, 1985, 28(3): 974-982.
  • 3Terry J L, Zweben S J, Hallatschek K, et al. Observations of the turbulence in the scrape-off-layer of Alcator C-Mod and comparisons with simulation [J]. Phys. Plasmas, 2003, 10(5): 1739-1747.
  • 4Gareia O E. Blob Transport in the Plasma Edge: a Review [J]. Plasma Fusion Res., 2009, 4(0): 019.
  • 5Krasheninnikov S I, D'Ippolito D A, Myra J R. Recent theoretical progress in understanding coherent structures in edge and SOL turbulence [J]. J. Plasma Phys., 2008, 74(05): 679-717.
  • 6Zweben S J, Boedo J A, Grulke O, et al. Edge turbulence measurements in toroidal fusion devices [J]. Plasma Phys. Contr. Fusion, 2007, 49(7): S1-S23.
  • 7D'Ippolito D A, Myra J R, Krasheninnikov S I, et al. Blob transport in the tokamak scrape-off-layer [J]. Contr. Plasma Phys., 2004, 44(1-3): 205-216.
  • 8Mtiller S H, Diallo A, Fasoli A, et al. Plasma blobs in a basic toroidal experiment: Origin, dynamics, and induced transport [J]. Phys. Plasmas, 2007, 14(11): 110704.
  • 9Fumo I, Labit B, Podest M, et al. Experimental Observation of the Blob-Generation Mechanism from Interchange Waves in a Plasma [J]. Phys. Rev. Lett., 2008, 100(5): 055004.
  • 10Katz ;N, Egedal J, Fox W, et al. Experiments on the Propagation of Plasma Filaments [J]. Phys. Rev. Lett., 2008, 101(1): 015003.

二级参考文献38

  • 1Takewaki H, Nishiguchi A, Yabe T. Cubic interpolated pseudo-particle method (CIP) for solving hperbolic-type equations [J]. J Comput Phys, 1985, 61: 261.
  • 2Yabe T, Aoki T. A universal solver for hyperbolic equations by cubic-polynomial interpolation (I. One-dimensional solver) [J]. Comput Phys Commun, 1991, 66: 219.
  • 3Yabe T, Ishikawa T, Wang P Y, et al. A universal solver for hyperbolic equations by cubic-polynomial interpolation (Ⅱ. Two- and three-dimensional solvers)[ J]. Comput Phys Commun, 1991, 66: 233.
  • 4Xiao F, Yabe T, Nizam G, Ito T. Constructing a muhi-dimensional oscillation-preventing scheme for the advection equation by a rational function[ J]. Comput Phys Commun, 1996, 94 : 103.
  • 5Yoon S Y, Yabe T. The unified simulation for incompressible and compressible flow by the predictor-corrector scheme based on the CIP method[ J]. Comput Phys Commun, 1999, 119: 149.
  • 6Yabe T, Mizoe H, Takizawa K, et al. Higher-order schemes with CIP method and adaptive Soroban grid towards mesh-free scheme[ J]. J Comput Phys, 2004, 194: 57.
  • 7Xiao F, Yabe T, Ito T, Tajima M. An algorithm for simulating solid objects suspended in stratified flow[ J]. Comput Phys Commun, 1997, 102: 147.
  • 8Berger M J, Oliver J. Adaptive mesh refinement for hyperbolic partial differential equations[J]. J Comput Phys, 1984, 53: 484.
  • 9Nakamura T, Tanaka R, Yabe T, Takizawa K. Exactly conservative semi-Lagrangian scheme for multi-dimensional hyperbolic equations with directional splitting technique[ J]. J Comput Phys, 2001, 174: 171.
  • 10Yabe T. Interface capturing and universal solution of solid, liquid and gas by CIP method [ C ]//Proceedings Conf High- Performance Computing on Multi-phase Flow, Tokyo, 1997.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部