摘要
针对海底浅层声学探测中数据管理效率低、数据挖掘困难等问题,本文提出一种基于特征和应用的数据融合方法:首先基于主题进行数据集成,然后对集成数据根据相关特征和应用进行数据融合,最终实现面向应用的数据高效管理和有效融合。在研究数据集成与融合模型的过程中,提出了相关模型评价方法。本研究表明,此方法能够在海底浅层声学探测中有效提高数据管理和信息挖掘的效率。
Aiming at the inefficient data management and data mining difficulties in marine sub-bottom acoustic exploration, a data fusion method based on the features and applications was proposed in the paper. Marine sub-bottom acoustic exploring data was integrated firstly based on the themes. Then according to the relevant features and applications, the integrated data was fused, and finally implemented the efficient application-oriented data management and data mining. Moreover, the evaluation methods for the proposed models were put forward. The result showed that this approach could promote the efficiency of data management and data mining in marine sub-bottom acoustic exploration areas.
出处
《测绘科学》
CSCD
北大核心
2013年第5期72-73,76,共3页
Science of Surveying and Mapping
关键词
海洋测绘
海底浅层声学探测
空间数据融合
F-A数据融合模型
侧扫声呐数据处理
hydrographic surveying and charting
marine sub-bottom acoustic exploration
spatial data fusion
F-A data fusion model
sidescan image processing