期刊文献+

SEEPS基热塑性磁流变弹性体复合材料的制备、结构与性能 被引量:3

Preparation, structure and properties of SEEPS-based thermoplastic magnetorheological elastomer composites
下载PDF
导出
摘要 选用性能优良的聚(苯乙烯-b-乙烯-b-乙烯-丙烯-b-苯乙烯)(SEEPS)热塑性弹性体代替传统橡胶为基体、软磁性羰基铁粉为磁性填料,采用熔融共混技术制备得到弹性好、磁流变效应高的新型各向同性和各向异性SEEPS基热塑性磁流变弹性体(MRE)复合材料。详细地介绍了两类材料的制备方法,系统地研究了基体分子量、羰基铁含量和外加磁场强度等因素对材料结构和性能的影响。羰基铁粉在各向同性MRE复合材料中呈现无规均匀分散,在各向异性MRE复合材料中呈现明显链状定向有序结构。高分子量基体吸油性优于低分子量基体,柔软度更高,加工性能更好,强度和韧性受高填充羰基铁的影响小,磁流变效应也更高。各向异性MRE比各向同性MRE具有更高的储能模量和磁流变效应。 Novel isotropic and anisotropic SEEPS-based thermoplastic magnetorheological elastomers (MRE) composites possessing good elasticity and high magnetorheological effect were prepared by melting blending technique with the poly(styrene-b-ethylene-ethylene-propylene-b-styrene) (SEEPS) as matrix substituting traditional rubber and carbonyl iron powders as magnetic fillers. In this paper, the preparation method of SEEPS-based MRE composites was described in detail, and effects of matrix molecular weight, carbonyl iron concentration and external magnetic field intensity on the structure and properties of the SEEPS based MRE composites were investigated systemically. Carbonyl iron powders exhibit random and uniform dispersion in isotropic MRE composites, and obvious oriented and ordered chain-like structures in anisotropic MRE composites. Compared with lower molecular weight matrix, the higher molecular weight matrix possesses better oil adsorbility, softness and processibility, higher magnetorheological effect, and less influence on the strength and toughness by higher filling of carbonyl iron. Isotropic MRE composite shows higher storage modulus and magnetorheological effect than the anisotropic MRE composite does.
出处 《磁性材料及器件》 北大核心 2013年第5期1-5,11,共6页 Journal of Magnetic Materials and Devices
基金 铁道部科研开发计划课题重点项目(J2011J002) 闵行区-上海交通大学区校科技合作专项资金资助项目
关键词 磁流变弹性体 热塑性弹性体 羰基铁 SEEPS 性能 magnetorheological elastomer thermoplastic elastomer carbonyl iron SEEPS properties
  • 相关文献

参考文献12

  • 1Kchit N, Bossis G. Electrical resistivity mechanism in magnetorheological elastomer [J]. J Phys D: Appl Phys, 2009, 42: 105505.
  • 2Kchit N, Lancon P, Bossis G. Thermo-resistance and giant magnetoresistance of magnetorheological elastomers [J]. J Phys D: Appl Phys, 2009, 42: 105506.
  • 3Guan X C, Dong X F, Ou J P. Magnetostrictive effect of magnetorheological elastomer [J]. J Magn Magn Mater, 2008, 320: 158-163.
  • 4Liao G J, Gong X L, Xuan S H, et al. Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer [J]. J Intell Mater Syst Struct, 2012, 23: 25-33.
  • 5Ju B X, Yu M, Fu J, et al. A novel porous magnetorheological elastomer: preparation and evaluation [J]. Smart Mater Struct, 2012, 21: 035001.
  • 6Gong X L, Zhang X Z, Zhang P Q. Fabrication and characterization of isotropic magnetorheological elastomers [J]. Polym Test, 2005, 24: 669-676.
  • 7Bose H. Viscoelastic properties of silicone-based magnetorheological elastomers [J]. Int J Mod Phys B, 2007, 21: 4790-4797.
  • 8Chen L, Gong X L, Jiang W Q, et al. Investigation on magnetorheological elastomers based on natural rubber [J]. J Mater Sci, 2007, 42: 5483-5489.
  • 9Sun T L, Gong X L, Jiang W Q, et al. Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene [J]. Polym Test, 2008, 27: 520-526.
  • 10Wei B, Gong X L, Jiang W. Influence of polyurethane properties on mechanical performances of magnetorheological elastomers [J]. J Appl Polym Sci,2010, 116: 771-778.

同被引文献63

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部