期刊文献+

距离-速度同步干扰环境下的目标检测 被引量:2

Target Detection in Range- Velocity Synchronous Jamming Environment
下载PDF
导出
摘要 针对距离-速度同步干扰,首先基于多普勒滤波器组和恒虚警率(CFAR)检测技术得到目标检测决策,并结合目标检测决策建立雷达回波的速度-时间数据矩阵。随后分析了目标和干扰的特征差异,基于超快霍夫变换(VFHT)提取雷达回波的目标特征霍夫空间。最后根据该霍夫空间采用CFAR检测技术对目标检测,从而形成基于距离-速度同步干扰抑制的目标检测方法。与常规快速霍夫变换(FHT)相比,提出的VFHT具有更高的计算效率。同时,该方法由于在雷达数据处理层面进行目标检测,不需要改变雷达系统的信号处理结构,大大降低了雷达装备成本。理论仿真表明在同样的目标检测性能前提下,基于VHFT的目标检测算法所需的信噪比要求放宽了10 dB以上,为弱目标回波信号环境中的应用奠定了基础。 According to range-velocity synchronous jamming, firstly, target detection decision is acquired based on the Doppler filter bank and detection technology of constant false alarm rate(CFAR). Secondly, Combined with the target detection decision from radar echo, velocity-time data matrix is obtained. Then the feature of the targets in the velocity-time data matrix is discussed. Based on the very fast Hough transform(VFHT), Hough space of target feature of radar echo is obtained. Finally, target detection based on range-velocity synchronous jamming suppression is formed by using the detection technology of the CFAR and Hough space of target feature. Compared with fast Hough transform(FHT), the VFHT in this paper has a higher computational efficiency. Be- sides, because it detects target in radar data processing level, it can reserve radar signal processing component, which greatly reduces the cost of radar. Theoretical simulations show that the target detection algorithm based on the VFHT has a lower SNR of more than 10 dB under the same performance of target detection, which lays a good foundation in weak target echo environment.
出处 《电讯技术》 北大核心 2013年第9期1191-1196,共6页 Telecommunication Engineering
关键词 雷达对抗 目标检测 超快霍夫变换 距离-速度同步干扰 恒虚警率 radar ECM target detection VFHT range-velocity synchronous jamming CFAR
  • 相关文献

参考文献8

  • 1赵国庆.雷达对抗原碑[M].西安:西安电子科技大学出版社,2009.
  • 2Gu Haiyazl, Xiong Ying, Wag Pei, et al. Rangcvel(zity syn- chronous gatpull radar jamming suppreion with instantaneous croscorrelation[ C ]//Proeeefings of 2011 IEEE CIE Interna- tional Conference on Ra 'dar. Chellgdu: IEF, 2011 : 1839 - 1842.
  • 3罗双才,唐斌.一种基于盲分离的欺骗干扰抑制算法[J].电子与信息学报,2011,33(12):2801-2806. 被引量:29
  • 4Luo Shuangeai, Xiong Ying, Cheng Hao, etal. An algorithm of radar deception janulting sLtppression based on blind signal separation [ C ]//hx'eedings of 2011 International Confer- ence on Computational Problem-Solving (ICCP). Chengdu: IEEE,2011 : 167 - 170.
  • 5陈晓军,成昊,唐斌.基于ICA的雷达信号欠定盲分离算法[J].电子与信息学报,2010,32(4):919-924. 被引量:23
  • 6Carlson B D, Evans E D, Wilson S L. Search radar detection and track with the Hough transfoml. 1. system concept [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1994,30(1) :102 - 108.
  • 7孙丰荣,刘积仁.快速霍犬变换算法[J].汁算机学报,200l,24(10):1102-1109.
  • 8Basm R, Mahafza. Simulation for radar systems design[M ]. New York: Chapman & Hall/CRC,2004.

二级参考文献26

  • 1肖文书,张兴敢,都思丹.雷达信号的盲分离[J].南京大学学报(自然科学版),2006,42(1):38-43. 被引量:25
  • 2黄健喜,计征宇,黄顺吉.基于ICA的主、被动雷达抗干扰性能研究[J].信号处理,2007,23(1):15-18. 被引量:6
  • 3Aissa-EI-Bey, Linh-Trung N, and Abed-Meraim K, et al.. Underdetermined blind separation of nondisjoint sources in the time-frequency domain. IEEE Transactions on Signal Processing, 2007, 55(3): 897-907.
  • 4Delorme A, Sejnowski T, and Makeig S. Enhanced detection of artifacts in EEG data using high-order statistics and independent component analysis[J]. Neuroimage, 2007, 34(4) 1443-1449.
  • 5Bofill P and Zibulevsky M. Underdetermined blind source separation using sparse representations [J]. Signal Processing, 2001, 81(11): 2353-2362.
  • 6Donoho D L and Elad M. Optamally sparse representation in general dictionaries via ll-norm minimization[J]. Proceedings of the National Academy of Sciences of the USA, 2003, 100(4) 2197-2202.
  • 7Li Y Q, Cichoci A, and Amari S. Analysis of sparse representation and blind source separation[J]. Neural Computation, 2004, 16(6): 1193-1234.
  • 8Fevotte C and Godsill S. A Bayesian approach for blind separation of sparse sources[J]. IEEE Transactions on Audio Speech Language Process, 2006, 16(6): 2174-2188.
  • 9Araki S, Sawada H, and Mukai R. Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors[J]. Signal Processing, 2007, 87(8): 1833-1847.
  • 10Hamada T, Nakano K, and Ichijo A. Wavelet-based underdetermined blind source separation of speech mixtures. IEEE ICCAS, Seoul, Korea, 2007: 2790-2794.

共引文献49

同被引文献18

  • 1郭尊华,李少洪.基于积谱的雷达目标高分辨率距离像识别[J].北京航空航天大学学报,2006,32(4):404-406. 被引量:2
  • 2石晓娟,李明,吴顺君.基于DRFM的脉冲多普勒雷达组合干扰及其效能评估[J].电子信息对抗技术,2006,21(6):34-38. 被引量:8
  • 3Olivier K,Cilliers J E,du Plessis M. Design and perform-ance of wideband DRFM for radar test and evaluation[J]. Electronics Letters,2011,47(14):824-825.
  • 4Berger S D. Digital radio frequency memory linear rangegate stealer spectrum[J]. IEEE Transactions on Aero-space and Electronic System,2003,39(2):725-735.
  • 5Greco M,Gini F,Farina A. Radar Detection and Classifi-cation of Jamming Signals Belonging to a Cone Class[J].IEEE Transactions on Signal Processing,2008,56(5):1984-1993.
  • 6Bandiera F,Farina A,Orlando D,et al. Detection Algo-rithms to Discriminate Between Radar Targets and ECMSignals[J]. IEEE Transactions on Signal Processing,2010,58(12):5984-5993.
  • 7Blair W D,Brandt-Pearce M. Discrimination of targetand RGPO echoes using frequency diversity[C] / / Pro-ceedings of 29th Southeastern Symposium on System The-ory. Cookeville:IEEE,1997:509-513.
  • 8Tian X. Radar deceptive jamming detection based ongoodness-of-fit testing[J]. Journal of Information andComputational Science, 2012,9(13):3839-3847.
  • 9Ojala T,Pietikainen M,Harwood D. A comparative study oftexture measures with classification based on featured dis-tributions[J]. Pattern Recognition,1996,29(1):51-59.
  • 10Ojala T,Pietikainen M,Maenpaa T. Multiresolution grayscaleand rotation invariant texture classification with localbinary patterns[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence,2002,24(7):971-987.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部