期刊文献+

基于支持向量机的矿井通风机故障诊断系统的研究 被引量:9

The study of fault diagnosis system of mine ventilator based on support vector machine
下载PDF
导出
摘要 针对矿井通风机故障诊断过程中样本数据有限的特点,本文提出了一种基于支持向量机的矿井通风机故障诊断方法。支持向量机是一种机器学习方法,它对有限的样本数据具有良好的学习能力。采用支持向量机对样本数据通过学习形成故障分类器,利用该分类器对故障样本进行测试,得出矿井通风机的故障诊断结果。结果表明:支持向量机对有限样本数据具有良好的推广能力,最终达到了快速并准确地诊断矿井通风机故障的目的。 Abs Aimed at the limited sample data in the process of mine ventilator fault diagnosis, this paper proposes a fault diagno- sis method of mine ventilator based on support vector machine. Support vector machine is a machine learning approach, which has a good learn ability to the limited sample data. Using support vector machine form fault classifiers by learning through the reduced da- ta, then obtained fault diagnosis results of mine ventilator by using the classifier to test the fault samples. The results show that sup- port vector machine has good promotion ability to small samples, it achieving ultimately the purposes of rapid and accurate diagno- sis the mine fan faults.
作者 石瑶 任清阳
出处 《自动化与仪器仪表》 2013年第5期18-20,共3页 Automation & Instrumentation
关键词 矿井通风机 故障诊断 支持向量机 故障分类器 Mine ventilator Fault diagnosis Support vector machine Fault classifier
  • 相关文献

参考文献5

二级参考文献23

  • 1[1]HSU C W,LIN C J.A comparison of methods for multiclass support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):415-425.
  • 2[2]KIJSIRKUL B,USSIVAKUL N.Multiclass support vector machines using adaptive directed acyclic graph[A].Proceedings of the 2002 International Joint Conference on Neural Networks[C].Honolulu,HI,USA,2002,1(5):980-985.
  • 3[3]PHETKAEW T,KIJSIRIKUL B,RIVEPIBOON W.Reordering adaptive directed acyclic graphs:an improved algorithm for multiclass support vector machines[A].Proceedings of the 2003 International Joint Conference on Neural Networks[C].Portland,OR,USA,2003.
  • 4[4]TIAN X,DENG F Q.An improved multi-class SVM algorithm and its application to the credit scoring model[A].Proceedings of the fifth World Congress on Intelligent Control and Automation[C].Hangzhou,China,2004.
  • 5[5]ANGUITA D,RIDELLA S,STERPI D.A new method for multiclass support vector machines[A].Proceedings of the 2004 International Joint Conference on Neural Networks[C].Budapest,Hungary,2004.
  • 6[8]TAKAHASHI F.Decision-tree-based multi-class support vector machines[A].Proceedings of the 9th International Conference on Neural Information Processing[C].Orchid Country Club,Singapore,2002.
  • 7[9]PLATT J,CRISTIANINI N,SHAWE-TAYLOR J.Large margin DAGs for multiclass classification[A].Proceedings of Neural Information Processing Systems[C].[s.l.],Cambridge,2000.
  • 8[10]PAUL G.Cox,Reza Adhami.Multi-class support vector machine classifier applied to hyper-spectral data[A].Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory[C].Huntsville,Alabama,2002.
  • 9[11]FRANC V,HLAVAC V.Multi-class support vector machine[A].Proceedings of the 16th International Conference on Pattern Recognition[C].Quebec City,Canada,2002.
  • 10[12]LIN Chunfu,WAMG Shengde.Fuzzy support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):464-471.

共引文献196

同被引文献72

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部