期刊文献+

直觉模糊遗传算法在软件测试中的应用 被引量:3

Application of Intuitionistic Fuzzy&Genetic Algorithm in Software Testing
下载PDF
导出
摘要 针对传统软件测试方法工作量大、测试过程重复性高等缺点,本文提出了一种新的软件测试方法,该方法基于直觉模糊理论和遗传算法,利用直觉模糊算法提取每组软件测试序列特征值,再经过遗传算法的选择、交叉和变异操作,获得软件测试序列的组合。实验结果证明:该算法具有隐性并行性和全局寻优能力,可在不降低速度的情况下提高软件测试的精度。 According to the traditional software testing methods' shortcoming of bigger workload and higher testing process re- peatability, this paper proposes a new software testing method,which based on intuitionistic fuzzy theory and genetic algorithm, us- ing intuitionistic fuzzy theory to extract each software test sequence features, then,presenting the genetic algorithm to select, cross- over and mutation operation to combinate to get the software testing sequence. Experimental results show that the algorithm has the implicit parallelism and global searching ability, which can be in improving software testing precision under the condition of no re- duction velocity.
作者 祁金佺
出处 《自动化与仪器仪表》 2013年第5期98-100,共3页 Automation & Instrumentation
关键词 直觉模糊理论 遗传算法 元素直方图 软件测试 Intuitionistic fuzzy theory Genetic algorithm Elements histogram Software testing
  • 相关文献

参考文献5

  • 1杨岩溪,刘鼎,新景.基于模糊遗传算法的图像相关匹配方法[J].中国科学仪器日志,2005,26(11):1166-1169.
  • 2Soodamani.R.通过对目标识别研究学习模糊建模[J].电机及电子学工程师联合会学报,2004,23(6):656-659.
  • 3齐岩,卢德唐.交互式遗传算法在基于内容的图像检索中的应用[J].中国图象图形学报(A辑),2004,9(1):46-55. 被引量:13
  • 4张郁金.基于内容的视觉信息检枣[M].北京:科学出版社,2003.
  • 5韩菊,马开匡.在彩色图像检索节模糊颜色直方图及其使用研究[J].电机及电子学工程师联合会学报,2002,11(8):944-952.

二级参考文献9

  • 1Pass G, Zabih R. Comparing images using joint histograms[J].The ACM Journal of Multimedia Systems, 1999,7(3):234-240.
  • 2Rui Yong, Huang T S, Michiael Ortega et al. Relevance feedback: A power tool for interactive content-Based image retrieval[J]. IEEE Transactions. Circuits and Systems for Video Technology, 1998,8(5) :644-655.
  • 3Zhou Xiang Scan, Huang S. Exploring the nature and variants of relevance feedback[A]. In:Proceedings IEEE Computer Vision and Pattern Recognition'01 Workshop on Content-Based Access of Image and Video Libraries [C], Hawaii, USA. 2001: 94-101.
  • 4Takagi. Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation [J].Proceedings of the IEEE, 2001,89(9) :1275-1296,.
  • 5Lee J,-Y, Cho S.-B. Interactive genetic algorithm for contentbased image retrieval [A]. In: Proceedings Of Asian Fussy Systems Symposium (AFSS'98)[C], Masan, Korea, June 1998: 479-484.
  • 6Rui Yong, Huang T S, Chang Shi-Fu. Image retrieval: Current techniques, promising directions, and open issues [J]. Visual Communication and Image Representation, 1999,10 (1) : 39 -62.
  • 7Goldberg D E. Genetic algorithms in search; optimization and machine learning [M]. Reading, MA, USA:Addison-Wesley Publishing, 1989.
  • 8KATO Syuko. An image retrieval method based on a genetic algorithm controlled by user's mind [J]. Journal of the Communications Research Laboratory, 2001,48 (2):71-86.
  • 9刘大有,卢奕南,王飞,梁艳春.遗传程序设计方法综述[J].计算机研究与发展,2001,38(2):213-222. 被引量:52

共引文献12

同被引文献21

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部