期刊文献+

矩阵的特征值与矩阵方程的关系

The relationship between the eigenvalues of matrix and matrix equations
下载PDF
导出
摘要 研究了矩阵A与A*的方程与A的特征值的关系.利用特征值的性质,得出了A的特征值λ应满足的条件.这个结果刻划了一些特殊矩阵的特征值的性质,并利用这个结果给出了广义投影算子的一个充要条件. In this paper,the relationship between the equation of A and A * and eigenvalue of A has been researched. By using the characteristic of eigenvalue,we get the condition that the eigenvalue λ of A may satisfy. This result has characterized the characteristic of the eigenvalue of some special matrix, and we have used this result to give a necessary and sufficient condition about generalized projections.
出处 《湖北师范学院学报(自然科学版)》 2013年第3期55-60,共6页 Journal of Hubei Normal University(Natural Science)
基金 国家自然科学基金(11271105) 湖北省教育厅重点项目(D20122202)
关键词 矩阵 特征值 广义投影算子 正规矩阵 matrix eigenvalue general projectors normal matrix
  • 相关文献

参考文献15

  • 1张德菊,张晓敏.正交矩阵的特征多项式及特征根[J].大学数学,2007,23(1):151-154. 被引量:5
  • 2杨胜良,马成业.一种三对角矩阵的特征值及其应用[J].大学数学,2009,25(6):182-187. 被引量:2
  • 3Li zhuxiang, Pang Mingxian. The distribution of eigenvalues for partitioned matrix [ J ]. Northeast Math J, 1996,12 (4) :455 -460.
  • 4Geng Xianguo, Dai H H. Nonlinearization of the 3 x 3 matrix eigenvalue problem related to coupled nonlinear Schrodinger equations [ J ]. Journal of Mathematical Analysis and Applications, 1999,233 ( 1 ) :26 - 55.
  • 5Horn R A,Johnson C R. Matrix Analysis(2) [ M]. Beijing:The people posts and Telecommunications Press,2005:75 -76.
  • 6北京大学数学几何与代数教研室代数小组.高等代数[M].北京:高等教育出版社,1984.
  • 7Franklin J N. Matrix theoryE M']. Englewood Cliffs,New Jersey:Prentlce Hal1,1968.
  • 8Afrait S N. Orthogonal and oblique projectors and the characteristics of pairs of vector spaces[ J]. Cambridge Philosophical Society, 1957,53(4) :800 - 816.
  • 9GroB J ,Trenlder G. Generalized and hypergeneralized projectors[ J ]. Linear Algebra Appl. 264 (1997) :463 474.
  • 10Baksalary J, Baksalary O, Liu X. Further properties of generali .zsd and hypergeneralized projections [ J ]. Linear Algebra Appl,2004 ,389 :295 - 303.

二级参考文献12

  • 1杨胜良.三对角行列式与Chebyshev多项式[J].大学数学,2006,22(6):125-129. 被引量:4
  • 2Yang Sheng-liang. On the LU factroization of the Vandermonde matrix[J]. Discrete Applied mathematics, 2005, 146(1) : 102-- 104.
  • 3Doust I, Hirschhorn M and Ho J. Trigonomertric identities, linear algebra, and computer algebra[J].The American Mathematical Monthly, 2005, 112(2): 155--164.
  • 4Rimas J. On computing of arbitrary positive integer power for one type of odd order tridiagonal matrices with zero row-I[J]. Applied Mathematics and Computation, 2005, 164(1): 149--154.
  • 5Andrews G, Askey R, Roy R. Special functions[M]. New York: Cambridge University Press, 2000.
  • 6Macdonald I. Symmetric functions and Hall polynomials[M]. New York: Cambridge University Press, 1995.
  • 7白述伟.高等代数选讲[M].哈尔滨:黑龙江教育出版社,2000.
  • 8张禾瑞,郝炳新.高等代数[M].北京:高等教育出版社,1998.
  • 9北京大学数学系几何与代数教研室代数小组.高等代数[M].北京:高等教育出版社,2000.
  • 10毛钢源.线性代数解题方法和技巧[M].武汉:湖南大学出版社,1987.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部