期刊文献+

表面活性剂对CO_2中表面润湿的分子动力学模拟

Molecular dynamics simulation of effects of surfactant on surface wettability in CO_2 environment
下载PDF
导出
摘要 通过分子模拟方法,研究稠密CO2溶剂中,全氟聚醚表面活性剂对水在3种不同亲水表面的润湿性的影响。结果表明:对于疏水性表面,表面活性剂部分取代存在于水滴和表面之间的CO2分子;对于弱亲水性表面,表面活性剂的加入使得水滴基本脱离表面;而在强亲水表面上,表面活性剂的加入增大水滴的接触角,减弱表面润湿性。同时进一步分析表面活性剂在水/CO2界面处的密度分布。总之,在稠密CO2溶剂中,表面活性剂能够改善表面的润湿性,这将有利于表面上亲水物质的脱除。 In the present of CO2 fluid, molecular dynamics simulations were performed to investigate the effects of perfluoropolyether ammonium carboxylate surfactant (Cll F23 04 COO- NH4 ) on the wetting be- havior of solid surfaces. The obtained liquid/vapor contact line indicated that the surfactant could partial- ly replace the interfacial CO2 molecules, which resided in the solid/liquid interfacial region on hydropho- bic surface. For a weak hydrophilic surface, the addition of surfactant almost made the droplet lose con- tact with the surface, while on a strong hydrophilic surface, the surfactants enhanced the droplet contact angle and weakened the surface wettability. The height of the center of mass of the droplet, as a function of simulation time, further showed the wetting behavior of the water droplet. The component distributions of surfactant could be seen in the density profiles of water, and surfactant headgro demonstrated that the surfactant could well improve the wettability of the surface in was in favor of the removal of the hydrophilic substance. up and tail. It was dense C02, thus it
出处 《南京工业大学学报(自然科学版)》 CAS 北大核心 2013年第5期13-18,共6页 Journal of Nanjing Tech University(Natural Science Edition)
基金 国家自然科学基金(21176113 20976079) 江苏省自然基金(BK2009359)
关键词 分子动力学模拟 表面活性剂 润湿性 CO2 molecular dynamics simulation surfactant wettability carbon dioxide ( CO2 )
  • 相关文献

参考文献14

  • 1Steytler D C, Rumsey E, Thorpe M, et al. Phosphate surfactants for water-in-COz microemulsions [ J ]. Langmuir,2001,17 :7948.
  • 2Lu L Y, Berkowitz M L. Molecular dynamics simulation of a re- verse micelle self assembly in supercritical CO2 [ J ]. Journal of the American Ceramic Society,2004,126 : 10254 - 10255.
  • 3Senapati S, Berkowitz M L. Molecular dynamics simulation studies of polyether and perfluoropolyether suffactant based reverse mi- celles in supercritical carbon dioxide [ J ]. Journal of Physical Chemistry B ,2003,107 : 12906 - 12916.
  • 4Chaltanya V S V, Senapati S. Self-assembled reverse micelles in supercritical CO2 entrap protein in native state[ J ]. Journal of the American Ceramic Society, 2008,130 : 1866 - 1870.
  • 5King J W, Williams L L. Utilization of criticalfluids in processing semiconductors and their related materials [ J ]. Current Opinion in Solid State and Materials Science, 2003,7:413 - 424.
  • 6LIU ShuYan,YANG XiaoNing,QIN Yan.Molecular dynamics simulation of wetting behavior at CO_2/water/solid interfaces[J].Chinese Science Bulletin,2010,55(21):2252-2257. 被引量:5
  • 7Plimpton S. Fast parallel algorithms for short-range molecular dy- namics [ J 1. Journal of Computational Physics, 1995,117 : 1 - 19.
  • 8Lundgren M, Allan N L, Cosgrove T, et al. Wetting of water and water/ethanol droplets on a non-polar surface: a molecular dy- namics study [ J ]. Langmuir,2002,18 (26) : 10462 - 10466.
  • 9Janecek J, Netz R R. Interfacial water at hydrophobic and hydro- philic surfaces : depletion versus adsorption [ J 1. Langmuir, 2007, 23(16) :8417 -8429.
  • 10Wongkoblap A,Do D D. Adsorption of water in finite length car- bon slit pore : comparison between computer simulation and exper- iment[ J ]. Journal of Physical Chemistry B, 2007,111 ( 50 ) : 13949 - 13956.

二级参考文献23

  • 1International Technology Roadmap for Semiconductors. Semiconductor Industry Association, 2005.
  • 2DeSimone J M. Practical approaches to green solvents. Science, 2002, 297:799-803.
  • 3Jones C A, Yang D, Irene E A, et al. HF etchant solutions in supercritical carbon dioxide for "Dry" etch processing of microelectronic devices. Chem Mater, 2003, 15:2867-2869.
  • 4King J W, Williams L L. Utilization of critical fluids in processing semiconductors and their related materials. Curr Opin Solid Mater Sci, 2003, 7:413-424.
  • 5Jones C A, Zweber A, DeYoung J P, et al. Applications of "dry" processing in the microelectronics industry using carbon dioxide. Critical Rev Solid State Mater Sci, 2004, 29:97-109.
  • 6Qin Y, Yang X, Zhu Y. Molecular dynamics simulation of interaction between supercritical CO2 fluid and modified silica surfaces. J Pbys Chem C, 2008, 112:12815-12824.
  • 7Keagy J A, Zhang X, Busch E, et al. Cleaning of patterned porous low-k dielectrics with water, carbon dioxide and ambidextrous surfactants. J Supercrit Fluids, 2006, 39:277-285.
  • 8Zhang X, Pham J Q, Martinez H J, et al. Water-in-carbon dioxide microemulsion for removing postech residues from patterned porous low-k dialectrices. J Vacuum Sci Technol, 2003, B21:2590-2598.
  • 9Keagy J A, Li Y, Green P F, et al. CO2 promotes penetration and removal of aqueous hydrocarbon surfactant cleaning solutions and silylation in low-k dielectrics with 3 nm pores. J Supercrit Fluids, 2007, 42:398-409.
  • 10Dickson J L, Guprta G, Horozov T S, et al. Wetting phenomena at the CO2/Water/Glass interface. Langmuir, 2006, 22:2161-2170.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部