摘要
针对煤矿变压器励磁涌流导致差动保护误动的问题,综合考虑了变压器励磁涌流和故障电流的特征,提出了一种基于粒子群算法的BP神经网络的新算法。利用MATLAB仿真软件对一个双端供电系统进行仿真,将检测到的电流信号作为PSO-BP神经网络的输入样本,进行训练及测试。仿真结果表明,此方案可以快速地、可靠地识别变压器励磁涌流。
problem of differential transformer protection malfunction caused by inrush current in some coals, the paper considering the characteristics of transformer inrush current and fault current, a new method to identify inrush current based on PSO-BP neural network is proposed. The simulation model of a double-ended power supply system is established by MATLAB. The current signals were obtained by simulation results and regarded as the PSO-BP neural network input samples, then training and testing. The simulation result shows that this method can identification transformer magnetizing inrush current and quickly and reliably. Key words: BP neural network; particle swarm optimization; inrush current; transformer
出处
《煤矿机械》
北大核心
2013年第9期37-39,共3页
Coal Mine Machinery
基金
山东省自然科学基金(ZR2012EEM021)
山东科技大学研究生科技创新基金(YCA120108)
关键词
BP神经网络
粒子群算法
励磁涌流
变压器
BP neural network
particle swarm optimization
inrush current
transformer