期刊文献+

基于非参数核密度估计的风电功率区间预测 被引量:14

Wind Power Interval Prediction Based on Non-parametric Kernel Density Estimation
下载PDF
导出
摘要 由于风电的高度随机性和波动性,且风电功率的预测精度仍较低,因此传统的风电功率点预测不足以描绘风电的不确定性。在风电功率点预测值的基础上,采用非参数核密度估计方法计算风电功率预测误差的概率密度,并采用三次样条插值拟合预测误差的概率分布曲线,继而得出满足一定置信概率的风电功率预测区间。结果表明,采用风电功率区间预测能提供风电功率预测曲线和该曲线的变化范围,更有利于风电的不确定性建模。 As the high randomness and fluctuation of wind power, as well as the low precision of the power predic- tion, the traditional prediction of wind power point is not able to describe the uncertainty of wind power. In this article, non-parametric kernel density estimation is adopted to calculate the probability density error of wind power prediction. In addition, we get a wind power prediction interval with the method of three spline interpolation which satisfies the certain confidence interval. The results show that wind power interval forecasting can provide wind power prediction curve and its variation range. Thus, it is more suitable for wind power uncertainty modeling.
出处 《水电能源科学》 北大核心 2013年第9期233-235,54,共4页 Water Resources and Power
基金 国家高技术研究发展计划(863计划)基金资助项目(2011AA05A101) 国家重点基础研究发展计划(973计划)基金资助项目(2010CB227206)
关键词 风电功率预测 置信区间 非参数核密度估计 预测误差分布 wind power prediction confidence interval non-parametric kernel density estimation prediction errordistribution
  • 相关文献

参考文献8

  • 1Pinson P,Madsen H,Nielsen H A,et al. From Probabi- listic Forecasts to Statistical Scenarios of Short-term Wind Power Production[J]. Wind Energy, 2009,12 (1) :51-62.
  • 2杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 3范高锋,王伟胜,刘纯,戴慧珠.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,28(34):118-123. 被引量:360
  • 4Lange M. Analysis of the Uncertainty of Wind Pow- er Predictions[D]. Oldenburg, Germany: University of Oldenburg, 2003.
  • 5Bludszuweit H, Dominguez-Navarro J A, Llombart A. Statistical Analysis of Wind Power Forecast Er- ror [J]. IEEE Transactions on Power Systems, 2008,23 (3) : 983-991.
  • 6Pinson P. Estimation of the Uncertainty in Wind Power Forecasting [D]. Paris, France: Ecole des Mines de Paris, 2006.
  • 7王彩霞,鲁宗相,乔颖,闵勇,周双喜.基于非参数回归模型的短期风电功率预测[J].电力系统自动化,2010,34(16):78-82. 被引量:105
  • 8TransnetBW GmbH. Renewable Engrgies[EB/OL]. ht- tp ://transnet-bw. eom/key-figures/renewable-ener- gies-res/, 2012-07-14.

二级参考文献52

共引文献927

同被引文献163

引证文献14

二级引证文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部