期刊文献+

基于改进的BP神经网络的光伏组件发电量预测模型设计 被引量:5

Design of Photovoltaic Module Generation Power Forecasting Model Based on Improved BP Neural Network
下载PDF
导出
摘要 针对光伏并网发电系统发电量的不稳定性对电网的冲击和污染,分析了光伏发电的影响因素,建立了基于改进的BP神经网络的发电量预测模型。该模型采用Fletcher-Reeves共轭梯度算法,克服了传统BP神经网络算法收敛较慢的缺点,在保持训练过程稳定的前提下,具有更快的学习速率。结合光伏发电的历史数据和当天天气情况,对该模型进行训练、测试和评估,并应用于光伏系统发电量的预测中。结果表明,该模型具有较高的精度,提高了光伏并网发电的安全和稳定性。 Since the power generated by grid-connected photovoltaic power generation system is unstable, it has great impact on the power grid. This paper analyzes the influencing factor of photovoltaic power generation, and the back-prop- agation neural network is adopted to establish the power prediction model. Using the Fletcher-Reeves conjugate gradient algorithm, this model overcomes the defect of slow convergence rate for traditional BP neural network. On the premise of keeping stable for the training progress, this model has faster learning rate. Combination of historical photovoltaic power generation and weather data, this model is trained, evaluated and applied to predict the photovoltaic power generation. The results indicate that the proposed model has high precision and improves safety and stability of grid-connected photo- voltaic power generation.
出处 《水电能源科学》 北大核心 2013年第9期243-246,共4页 Water Resources and Power
基金 中央高校基本科研业务费专项资金资助重点项目(11D10301) 金太阳示范工程基金资助项目
关键词 发电量预测 光伏系统 BP神经网络 Fletcher-Reeves共轭梯度算法 electricity generation forecasting~ photovoltaic system~ BP neural network~ Fletcher-Reeves coniugategradient algorithm
  • 相关文献

参考文献7

二级参考文献50

  • 1牛建军,吴伟,陈国定.基于神经网络自整定PID控制策略及其仿真[J].系统仿真学报,2005,17(6):1425-1427. 被引量:43
  • 2蔡正国,屈梁生.共轭梯度神经网络的研究[J].西安交通大学学报,1995,29(8):72-76. 被引量:11
  • 3付英,曾敏,李兴源,刘俊勇,王贵德.隐含层对人工神经元网络电压安全评估的影响[J].电力系统自动化,1996,20(11):13-16. 被引量:9
  • 4Femia N, Petrone G, Spagnuolo G, et al. Optimization of perturb and observe maximum power point tracking method[J]. IEEE Transactions on Power Electronics, 2005, 20(4): 963-973.
  • 5Kim I S, Kim M B, Youn M J. New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1027-1035.
  • 6Xiao W, Lind M G J, Dunford W G, et al. Real-time identification of optimal operating points in photovoltaic power systems[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1017-1026.
  • 7Chakraborty S, Weiss M D, Simoes M G. Distributed intelligent energy management system for a single-phase high-frequency AC microgrid[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 97-109.
  • 8Yona A, Senjyu T, Funabashi T. Application of recurrent neural network to short-term-ahead generating power forecasting for photovoltaic system[C]. IEEE Power Engineering Society General Meeting, 2007.
  • 9Tsikalakis A G, Hatziargyriou Nikos D. Centralized control for optimizing microgrids operation[J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 24 1-248.
  • 10Kem E C, Culachenski E M, Ken G A. Cloud effects on distributed photovoltaic generation: slow transients at the gardner, massachusetts photovoltaic experiment[J]. IEEE Transactions on Energy Conversion, 1989,4(2): 184-190.

共引文献512

同被引文献33

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部