期刊文献+

基于层次粒子群算法的非线性双层规划问题求解策略 被引量:22

Solution strategy for bi-level nonlinear programming problem based on hierarchical particle swarm optimization
原文传递
导出
摘要 在交通与物流网络系统规划中的许多决策问题可以归结为双层规划模型,这类问题大多属于非凸优化问题.现有算法要么难以获得全局最优解,要么在解决大规模问题时存在算法复杂度及计算效率问题.本文基于进化博弈及多目标优化非支配排序的思想设计了层次粒子群算法,通过两个粒子群算法的交互迭代来模拟决策者之间的博弈寻优过程,从而获得使各方利益最大化的双层规划问题的最优解.最后通过测试函数验证算法的有效性. Many decision-making problems in traffic and logistics network system planning can be formu- lated as bilevel programming models, which are intrinsically nonconvex and existing algorithms are either difficult to obtain the global optimal solution or to solve large scale problems with the complexity and efficiency issues. In this paper, based on the idea of evolution game and multi-objective optimization non- dominated sort, a hierarchical particle swarm algorithm for the model has been designed, by the interaction of two particle swarm algorithm iterations to simulate the interaction between policy-makers during the game searching, and to obtain the optimal solution of bilevel programming problems, in order to maximize the interests of all parties. Finally, the application of the model and its algorithm are illustrated with test function.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2013年第9期2292-2298,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(60905066) 重庆市教委科研项目(KJ070509) 重庆邮电大学博士启动基金(A200903)
关键词 层次粒子群算法 双层非线性规划 约束优化 hierarchical particle swarm optimization bilevel nonlinear programming constrained opti-mization
  • 相关文献

参考文献13

  • 1Colson B, Marcotte P, Savard G. An overview of bilevel optimization[J]. Annals of Operations Research, 2007, 153(1): 235-256.
  • 2Andreani R, Castro S L C, ChelaJ L, et al. An inexact-restoration method for nonlinear bilevel programming problems[J]. Computational Optimization and Applications, 2009, 43(7): 307-328.
  • 3Colson B, Marcotte P, Savard G. Bilevel programming: A survey[J]. A QuarterlyJournal of Operation Research (40R), 2005,3(2): 87-107.
  • 4Dempe S, Kalashnikov V, Kalashnykova N. Optimality conditions for bilevel programming problems[J]. Springer Optimization and Its Applications, 2006, 2(1): 3-28.
  • 5Yang X H, Yang Z F, Yin X, et al. Chaos gray-coded genetic algorithm and its application for pollution source identifications in convection-diffusion equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(8): 1676-1688.
  • 6ChenJ J, Yang X H. Optimal parameter estimation for Muskingum model based on gray-encoded accelerating genetic algorithm[J]. Communications in Nonlinear Science and Numerical Simulation, 2007, 12(5): 849-858.
  • 7Yang X H, Yang Z F, Lu G H, et al. A gray-encoded, hybrid-accelerated, genetic algorithm for global optimiza?tions in dynamical systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2005, 10(4): 355-363.
  • 8Andreani R, Castro S L C, ChelaJ L, et al. An inexact-restoration method for nonlinear bilevel programming problems[J]. Computational Optimization and Applications, 2009, 43(3): 307-328.
  • 9Clerc M, KennedyJ. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.
  • 10Arora S R, Gupta R. Interactive fuzzy goal programming approach for bilevel programming problem[J]. EuropeanJournal of Operational Research, 2009, 194(2): 368-376.

同被引文献242

引证文献22

二级引证文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部