期刊文献+

缺陷对RRAM材料阻变机理的影响 被引量:1

Influence of defects on the resistive switching mechanism of RRAM
下载PDF
导出
摘要 基于密度泛函理论(DFT)的第一性原理和VASP仿真软件,分析了阻变随机存储器(RRAM)阻变效应的物理机制。对比计算了单斜晶相HfO2中Ag掺杂体系、氧空位缺陷体系和Ag及氧空位缺陷共掺杂复合缺陷体系的能带、态密度、分波电荷态密度面和形成能,结果表明在相同浓度下Ag掺杂体系能形成导电通道,而氧空位缺陷体系不能形成导电通道;共掺杂体系中其阻变机制以Ag传导为主,氧空位缺陷为辅,且其形成能变小,体系更加稳定。计算共掺杂体系的布居数和迁移势垒,得出在氧空位缺陷存在的前提下,Ag—O键长明显增加,Ag离子的迁移势垒变小,电化学性能增强。进一步计算了缺陷间的相互作用能,其值为负,表明缺陷间具有相互缔合作用,体系更加稳定。 The resistance switching effect physical mechanisms of resistance random accessory memory was stud- ied with the first-principles based on the density functional theory and the VASP software. The comparison cal culation of the energy band, density of states, isosurface of partial charge density and formation energies of Ag doped system, oxygen vacancy defect system and the co-doped composited defect system of the Ag and oxygen vacancy in the monoclinic Hf02 are performed. The calculated results reveal that the conductive path of Ag doped system can be established, but the oxygen vacancy defect system cannot be established under the same concentration. The calculated results also reveal that the conductivity of the resistance switching mechanisms in co-doped system was mainly dependent on the Ag and was auxiliary dependent on the oxygen vacancy defects, the formation energy becomes smaller and the system was more stable. The mulliken population and migration barrier of the co-doped system was calculated. The calculated results indicate that when the oxygen vacancy de fects exist, the Ag--O bond was enhanced obviously, the migration barrier of the Ag ions becomes smaller and the electrochemical performance was also enhanced. In addition, the calculated results of the interaction energy among the defects of the co-doped system are negative, which show that the associative ability exists among the defects and the system becomes more stable.
出处 《功能材料》 EI CAS CSCD 北大核心 2013年第17期2481-2485,共5页 Journal of Functional Materials
基金 国家青年科学基金资助项目(61006064) 国家"核高基"重大专项子课题资助项目(2009ZX01031-001-004 2010ZX01030-001-001-004) 安徽省高校优秀青年基金资助项目(2010SQRL013ZD)
关键词 VASP 阻变效应 缺陷 导电通道 RRAM VASP resistive switching defect conductive path RRAM
  • 相关文献

参考文献25

  • 1王艳,刘琦,吕杭炳,龙世兵,王慰,李颖弢,张森,连文泰,杨建红,刘明.掺杂技术对阻变存储器电学性能的改进[J].科学通报,2012,57(5):314-319. 被引量:3
  • 2Robertson J, Gillen R. Defect densities inside the conduc- tive filament of RRAMs [J]. Microeleetronic Engineer- ing, 2013,109:208-210.
  • 3王永,管伟华,龙世兵,刘明,谢常青.阻变式存储器存储机理[J].物理,2008,37(12):870-874. 被引量:8
  • 4Gao Bin,Sun Bing,Zhang Haowei, et al. Unified physical model of bipolar oxide based resistive switching memory [J]. IEEE Electron Device Lett, 2009, 30:1326-1328.
  • 5Liu Q, Long S B, Wang W, et al. Improvement of resis tive switching properties in ZrO2-based ReRAM with im- planted Ti ions[J].IEEE Electron Device Lett, 2009, 30:1335-1337.
  • 6Wong M F, Herng T S, Zhang Z, et al. Stable bipolar surface potential behavior of copper-doped zinc oxide films studied by Kelvin probe force microscopy [J]. Appl Phys Lett, 2010, 97: 232103.
  • 7Longnos F, Vianello E, Cagli C, et al. On the impact of Ag doping on performance and reliability of GeS2-based conductive bridge memories [J]. Solid-State Electronics, 2013,84 : 155-159.
  • 8Jung K, Choi J, Kim Y, et al. Resistance switching char- acteristics in Li-doped NiO [J]. J Appl Phys, 2008, (103) :034504.
  • 9Liu Q, Guan W H, Long S B, et al. Resistive switching of Au-impanted ZrO2 film for nonvolatile memory appli cation [J]. J ApplPhys, 2008, 104:114514.
  • 10Janousch M, Meijer G I, Staub U, et al. Role of oxygen vacancies in Cr-doped SrTiOa for resistance-change mem- ory [J]. Adv Mater, 2007,(19):2232-2235.

二级参考文献79

  • 1陈孝云,刘守新.S掺杂宽光域响应Ti_(1-x)SyO_2光催化剂的制备及表征[J].物理化学学报,2007,23(5):701-708. 被引量:15
  • 2Kim K R et al. Journal of the Korean Physical Society, 2006, 49 : S548
  • 3Zhang W W et al. Novel Colossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory (RRAM). In: Electron Devices Meeting. San Francisco,2002. 193
  • 4Chen A et al. Non-volatile resistive switching for advanced memory applications. In: Electron Devices Meeting. San Francisco, Washington, D. C. 2005. 746
  • 5Simmons J G. J. Phys. D: Appl. Phys. , 1971, 4:613
  • 6Simmons J G, Verderber R R. Proc. Roy. Soc. A. 1967, 301 : 77
  • 7Bozano L D, Kean B W et al. Appl. Phys. Lett. , 2004, 84 : 607
  • 8Doo Seok Jeong, Cheol Seong Hwang. J. Appl. Phys. , 2005, 98 : 113701
  • 9Frenkel J. Phys. Rev. 1938, 54:647
  • 10Simmons J G. Phys. Rev., 1967, 155:657

共引文献24

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部