期刊文献+

算子李代数g(G,M)[σ]的子代数 被引量:3

The Subalgebras of Lie Algebra g(G,M)[σ]of Operators
原文传递
导出
摘要 在李代数的研究中,经常使用算子李代数的结构去刻划其它李代数的代数结构,由算子构成的李代数在李代数理论中占有重要的位置.构造了算子李代数g(G,M)[σ]的子代数,然后讨论了这些子代数的代数结构. We often use lie algebra of operators to score the structures of others in the research of lie algebra. The lie algebra of operators holds the important position. In this paper we give the subalgebras of lie algebra g(G, M)[σ] of operators. We show the structures of these subalgebras.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第17期233-236,共4页 Mathematics in Practice and Theory
基金 黑龙江省自然科学基金项目(A201210) 齐齐哈尔大学青年教师科研启动支持计划项目(2012 KM32)
关键词 顶点算子 李代数 子代数 代数结构 vertex operator lie algebra vector space algebra structure
  • 相关文献

参考文献7

二级参考文献19

  • 1李立,王书琴.IX_r(a)的有限型IX_r~°(a)的未定Weyl群[J].数学进展,2005,34(5):619-626. 被引量:6
  • 2郑兆娟,谭绍滨.一类量子环面李代数的自同构群[J].数学学报(中文版),2007,50(3):591-600. 被引量:3
  • 3Berman S, Gao Y, Tan S. A unified view of some vertex operator constructions[ J]. Israel J Math, 2003,134:29 -60.
  • 4Allison B N, Azam S, Berman S, et al. Extended affine Lie algebras and their root systems[J]. Memoir Amer Math Soc, 1997,126: 605.
  • 5Feingold A J, Frenkel I B. Classical affine Lie algebras[ J ]. Advances in Math, 1985,56:117 -172.
  • 6Kac V G. In finite Dimensional Lie algebras[ M]. 2nd ed. Cambridge:Cambridge University Press, 1985.
  • 7Allison B N, Azam S, Berman S, Gao Y, Pianzola A. Extended affine Lie algebras and their root systems[J]. Memoir Amer Math Soc, 1997(126): 605-635.
  • 8Kac V G. In finite Dimensional Lie Algebras[M]. Second edition, Cambridge University Press, 1985.
  • 9Berman S, Gao Y and Tan S. A unified view of some vertex operator constructions[J]. Israel J Math, 2003, 134: 29-60.
  • 10BenKart G, Kang S J, Misra K C. Graded Lie algebras of Kac-Moody type [J]. Adv. in Math. (China),1993, 97(2): 154-190.

共引文献9

同被引文献11

  • 1李立,王书琴.IX_r(a)的有限型IX_r~°(a)的未定Weyl群[J].数学进展,2005,34(5):619-626. 被引量:6
  • 2S.Berman Y.Gao and S.Tan,A unified view of some vertex operator constructions[J].Israel J Math.2003,134:29-60.
  • 3LiLi,ChunyanWang,Xiufeng Du,Clifford algebra realization of certain infinite-dimensional Lie algebras[J].Algebra Colloquium,2011,18(1):105-120.
  • 4王春艳,李立,堵秀凤.算子李代数g(G,M)[σ][J].齐齐哈尔大学学报(自然科学版),2007,23(6):60-63. 被引量:6
  • 5Golenishcheva-Kutuzova M I, Lebedev D. Vertex operator representation of some quantum tori Lie algebras[J]. Commun Math Phys, 1992, 148: 403-416.
  • 6Berman S, Gao Y, and Tan S. A unified view of some vertex operator constructions[J]. Israel J Math, 2003, 134: 29-60.
  • 7Li Li, Chunyan Wang, Xiufeng Du, Clifford algebra realization of certain infinite-dimensional Lie algebras[J]. Algebra Colloquium, 2011, 18(1): 105-120.
  • 8Berman S,Gao Y,and Tan S.A unified view of some vertex operator constructions,Israel J.Math,2003,134:29-60.
  • 9李立.扭量子环面李代数■_A[σ][J].黑龙江大学自然科学学报,2008,25(2):274-276. 被引量:6
  • 10李立,王辉.扭量子环面李代数L_(_Q)[σ]的代数结构[J].数学的实践与认识,2011,41(9):225-228. 被引量:5

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部