期刊文献+

有界星形圆型域上的零伦全纯映照 被引量:1

Null-Homotopic Holomorphic Mappings on the Bounded Starlike Circular Domains
原文传递
导出
摘要 星形映照与螺形映照是多复变函数论中两个重要的映照类,他们共同的几何特征是其像域中任一点到原点的直线或螺线完全落在该像域中.利用拓扑学知识,从同伦的观点出发研究具有上述几何特征的映照,并得出其上的零伦全纯映照的判别方法,所得结论对复欧式空间C^n中的单位球B^n同样成立. Starlike mappings and spirallike mappings are two ofthe most important mappings in geometric theory of several complex variables. Their same geometric characterization is that the closed line segment or spiral joining each point in their image domains to zero lies entirely in their image domains. According to topology knowledge, westudy mappings with above geometric features, and draw distinguishing method of null-homotopic holomorphic mappings from the point of view of the homotopy.Zhese results are true for the unit ball in complex Euclidean space.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第17期247-254,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(11271359) 河南省计划项目(112300410251)
关键词 星形映照 螺形映照 零伦全纯映照 有界星形圆型域 starlike mappings spiral-like mappings null-homotopic holomorphic mappingsbounded starlike circular domains
  • 相关文献

参考文献2

二级参考文献5

  • 1Gong Sheng,Convex and Starlike Mappings in Several Complex Variables,1998年
  • 2Shi J H,Foundations of Function Theory in Several Complex Variables,1996年
  • 3Gong Sheng,Contemporary Mathematics,1993年,142卷,15页
  • 4Jin F L,Ordinary Differential Equations,1962年
  • 5Gong Sheng,The Bieberbach Conjecture

共引文献44

同被引文献5

  • 1Graham I, Kohr G. Lowner chains and the Roper-Suf-fridge extension operator [ J ]. Journal of Mathematical Analysis and Applications, 2000, 247(2): 448-465.
  • 2Graham I, Kohr G. Univalent mappings associated with the Roper-Suffridge extension operator[J]. Journal d' An- alyse Mathematique, 2000, 81(1): 331-342.
  • 3Graham I, Hamada H, Kohr G, et al. Extension opera- tor for locally univalent mappings [ J ]. Michigan Math- ematical Journal, 2002, 50(1): 37-55.
  • 4Ahlfors L V. Complex Analysis [ M]. New York: Me Graw-Hill, 1953.
  • 5钟玉泉.复变函数论[M].北京:高等教育出版社,2008.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部