摘要
对单主多从博弈进行分析,给出跟随者反应函数的相关性质.进一步,针对跟随者反应函数是集值映射的情形,定义出中级社会Nash均衡,讨论该均衡的存在性,并把该均衡应用到非线性反需求函数的单主多从寡头竞争,得出该模型的中级社会Nash均衡解.
One-leader-multi-follower games are studied, and characteristics of the replying function of followers are obtained. Furthermore, if the replying function of followers is set-valued, then we define intermediate social Nash equilibrium, and prove its existence under certain sufficient condition. As an application, we obtain the intermediate social Nash equilibrium in the oligarchic competition model, whose inverse demand function is nonlinear.
出处
《系统科学与数学》
CSCD
北大核心
2013年第7期777-784,共8页
Journal of Systems Science and Mathematical Sciences
关键词
单主多从博弈
中级社会Nash均衡
存在性
寡头竞争
One-leader-multi-follower games, intermediate social nash equilibrium,existence, oligarchic competition.