期刊文献+

单主多从博弈中中级社会Nash均衡的存在性与应用 被引量:6

THE EXISTENCE OF INTERMEDIATE SOCIAL NASH EQUILIBRIA FOR ONE-LEADER-MULTI-FOLLOWER GAMES AND ITS APPLICATION
原文传递
导出
摘要 对单主多从博弈进行分析,给出跟随者反应函数的相关性质.进一步,针对跟随者反应函数是集值映射的情形,定义出中级社会Nash均衡,讨论该均衡的存在性,并把该均衡应用到非线性反需求函数的单主多从寡头竞争,得出该模型的中级社会Nash均衡解. One-leader-multi-follower games are studied, and characteristics of the replying function of followers are obtained. Furthermore, if the replying function of followers is set-valued, then we define intermediate social Nash equilibrium, and prove its existence under certain sufficient condition. As an application, we obtain the intermediate social Nash equilibrium in the oligarchic competition model, whose inverse demand function is nonlinear.
作者 杨哲 蒲勇健
出处 《系统科学与数学》 CSCD 北大核心 2013年第7期777-784,共8页 Journal of Systems Science and Mathematical Sciences
关键词 单主多从博弈 中级社会Nash均衡 存在性 寡头竞争 One-leader-multi-follower games, intermediate social nash equilibrium,existence, oligarchic competition.
  • 相关文献

参考文献15

  • 1Stackelberg H V. The Theory of the Market Economy. Oxford: Oxford University Press, 1952.
  • 2Basar T, Olsder G J. Dynamic Non-cooperative Game theory. New York: Academic Press, 1982.
  • 3Pang J S, Fukushima M. Quasi-variational inequalities, generalized nash equilibri and multi- leader-follower games. Computational Management Science, 2005, 1: 21-56.
  • 4Yu J, Wang H L. An existence theorem for equilibrium points for multi-leaders-follower games. Nonlinear Analysis TMA, 2008, 69:1775 1777.
  • 5Flam S, Mallozzi L, Morgan J. A new look on Stackelberg Cournot equilibria in oligopolistic markets. Economic Theoru, 2002, 20: 183-188.
  • 6Mallozzi L, Morgan J. Ologopolistic markets with leadership and demand functions possibly discontinuous. Journal of Optimization Theory and Application, 2005, 125: 393-407.
  • 7Sheraly H D, Soyster A L, Murphy F H. Stackelberg-Nash-Cournot Equilibria: Characterizations and computations. Operation Research, 1983, 31: 253-276.
  • 8Morgan J, Raucci R. Lower semicontinuity for approximate social nash equilibria. International Journal of Game Theory, 2002, 31: 499-509.
  • 9Morgan J, Raucci R. Coutinuity properties of c-solutions for generalizaed parametric saddle point problems and application to hierarchical games. Journal of Optimization Theory and Application, 1997, 211: 30-48.
  • 10Breton M, Ali A, Haurie A. Sequential Stackelberg equilibria in two-person games. Journal of Optimization Theory and Application, 1980, 59: 71-97.

同被引文献28

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部