摘要
讨论了有序Banach空间E中的非线性二阶周期边值问题-u″(t)+bu′(t)+cu(t)=f(t,u(t)),0≤t≤ω,u(0)=u(ω),u′(0)=u′(ω)正解的存在性,其中b,c∈R且c>0,f:[0,ω]×P→P连续,P为E中的正元锥.本文通过新的非紧性测度的估计技巧与凝聚映射的不动点指数理论,获得了该问题正解的存在性结果.
The existence of positive solutions for nonlinear second order periodic boundary value problems
-u″(t)+bu′(t)+cu(t)=f(t,u(t)),0≤t≤ω,u(0)=u(ω),u′(0)=u′(ω)
in an ordered Banach spaces E was discussed,where b, c∈R, and c 〉 0, f(t, x) : [0,ω] × P → P is continuous, and P is the cone of positive elements in E. An existence result of positive solutions was obtained by employing a new estimate of noncompactness measure and the fixed point index theory of condensing mapping.
出处
《系统科学与数学》
CSCD
北大核心
2013年第7期818-824,共7页
Journal of Systems Science and Mathematical Sciences
基金
陇东学院青年科技创新项目(XYZK1109)资助课题
关键词
周期边值问题
闭凸锥
正解
凝聚映射
不动点指数
Periodic boundary value problems, closed convex cone, positive solution,condensing mapping, fixed point index.