摘要
性质(ω)是Weyl定理的一种变形.文章中将算子的一致Fredholm指标性质用于性质(ω)的判定中.根据一致Fredholm指标性质定义出一种新的谱集,通过该谱集和算子的拓扑一致降标之间的关系,给出了有界线性算子与其共轭算子同时满足性质(ω)的充要条件.之后,研究了算子矩阵的(ω)性质.
Property (ω) is a variant of Weyl's theorem. By the property of consistence in Fredholm index, the judgement of property (ω) is studied. Using the relation between a new spectrum defined in view of the property of consistence in Fredholm index and the topological uniform descent, the necessary and sufficient condition for an operator and its conjugate to satisfy property (ω) are given. In addition, the property (ω) of operator matrices is studied.
出处
《系统科学与数学》
CSCD
北大核心
2013年第7期825-833,共9页
Journal of Systems Science and Mathematical Sciences
基金
中央高校基本科研业务费专项资金青年教师资助计划项目(ZY20120213)资助课题
关键词
性质(ω1)
拓扑一致降标
谱
Property (ω1), topological uniform descent, spectrum.