摘要
讨论了二类离散的含有调和奇异算子的卷积型方程组,并通过离散的Laurent变换,把卷积型方程组化为具有间断系数的解析函数的Riemann边值问题,继而得到方程组的解.
In this paper, the method of solution for tow classes of equations of convolution type with harmonic singular operator is discussed. Using the theory of Laurent transform, these two classes of equations are turned into Riemann boundary value problems with discontinuous coefficients. A new solution method is given, and the general solution and condition of solvability are obtained.
出处
《系统科学与数学》
CSCD
北大核心
2013年第7期854-861,共8页
Journal of Systems Science and Mathematical Sciences
基金
曲阜师范大学校青年基金(XJ201218)资助课题